Подпишись и читай
самые интересные
статьи первым!

П.14. Сравнение чисел

Существуют определённые правила сравнения чисел. Рассмотрим следующий пример.

Вчера термометр показывал 15˚ C, а сегодня показывает 20˚ C. Сегодня теплее, чем вчера. Число 15 меньше числа 20, можем записать так: 15 < 20. А, если мы представим эти числа на координатной прямой, то точка со значением 15 будет расположена левее точки со значением 20.

А сейчас рассмотрим отрицательные температуры. Вчера на улице было -12˚ C, а сегодня -8˚ C. Сегодня теплее, чем вчера. Поэтому считают, что число -12 меньше числа -8. На горизонтальной координатной прямой точка со значением -12 расположена левее точки со значением -8. Можем записать так: -12 < -8.

Итак, если сравнивать числа с помощью горизонтальной координатной прямой, из двух чисел меньшим считается то, изображение которого на координатной прямой расположено левее, а большим то, изображение которого расположено правее. Например, у нас на рисунке А > B и C, но B > C.

На координатной прямой положительные числа располагаются справа от нуля, а отрицательные – слева от нуля, всякое положительное число больше нуля, а всякое отрицательное меньше нуля, и поэтому всякое отрицательное число меньше всякого положительного числа.

Значит, первое на что необходимо обратить внимание при сравнении чисел, – это знаки сравниваемых чисел. Число с минусом (отрицательное) всегда меньше положительного.

Если же мы сравниваем два отрицательных числа, то нужно сравнить их модули: большим будет то число, модуль которого меньше, а меньшим то число, модуль которого меньше. Например, -7 и -5. Сравниваемые числа – отрицательные. Сравниваем их модули 5 и 7. 7 больше чем 5, значит -7 меньше чем -5. Если отметить на координатной прямой два отрицательных числа, то левее окажется меньшее число, а большее будет расположено правее. -7 расположено левее -5, значит -7 < -5.

Сравнение обыкновенных дробей

Из двух дробей с одинаковыми знаменателями меньше та, у которой меньше числитель, и больше та, у которой больше числитель.

Можно сравнивать дроби только с одинаковыми знаменателями.

Алгоритм сравнения обыкновенных дробей

1) Если у дроби есть целая часть, сравнение начинаем именно с неё. Большей будет та дробь, у которой целая часть больше. Если целой части у дробей нет или они равны, переходим к следующему пункту.

2) Если дроби с разными знаменателями необходимо привести их к общему знаменателю.

3) Сравниваем числители дробей. Большей будет та дробь, у которой числитель больше.

Обратите внимание, дробь с целой частью всегда будет больше дроби без целой части.

Сравнение десятичных дробей

Десятичные дроби можно сравнивать только с одинаковым количеством цифр (знаков) справа от запятой.

Алгоритм сравнения десятичных дробей

1) Обращаем внимание на количество знаков справа от запятой. Если количество цифр одинаковое, можем приступать к сравнению. Если – нет, дописываем нужное количество нулей в одной из десятичных дробей.

2) Сравниваем десятичные дроби слева направо: целые с целыми, десятые с десятыми, сотые с сотыми и т.д.

3) Большей будет та дробь, в которой одна из частей окажется больше, чем в другой дроби (сравнение начинаем с целых чисел: если целая часть одной дроби больше, значит, и вся дробь больше).

Например, сравним десятичные дроби:

1) Допишем в первой дроби необходимое количество нулей, чтобы уравнять количество знаков после запятой

57,300 и 57,321

2) Сравнивать начинаем слева направо:

целые с целыми: 57 = 57;

десятые с десятыми: 3 = 3;

сотые с сотыми: 0 < 2.

Так как сотые первой десятичной дроби оказались меньше, вся дробь и будет меньше:

57,300 < 57,321

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Продолжаем изучать рациональные числа. В данном уроке мы научимся сравнивать их.

Из предыдущих уроков мы узнали, что чем правее число располагается на координатной прямой, тем оно больше. И соответственно, чем левее располагается число на координатной прямой, тем оно меньше.

Например, если сравнивать числа 4 и 1, то можно сразу ответить, что 4 больше чем 1. Это вполне логичное утверждение и каждый с этим согласится.

В качестве доказательства можно привести координатную прямую. На ней видно, что четвёрка лежит правее единицы

Для этого случая есть и правило, которое при желании можно использовать. Выглядит оно следующим образом:

Из двух положительных чисел больше то число, модуль которого больше.

Чтобы ответить на вопрос какое число больше, а какое меньше, сначала нужно найти модули этих чисел, сравнить эти модули, а потом уже ответить на вопрос.

Например, сравним те же числа 4 и 1, применяя вышеприведенное правило

Находим модули чисел:

|4| = 4

|1| = 1

Сравниваем найденные модули:

4 > 1

Отвечаем на вопрос:

4 > 1

Для отрицательных чисел существует другое правило, выглядит оно следующим образом:

Из двух отрицательных чисел больше то число, модуль которого меньше.

Например, сравним числа −3 и −1

Находим модули чисел

|−3| = 3

|−1| = 1

Сравниваем найденные модули:

3 > 1

Отвечаем на вопрос:

−3 < −1

Нельзя путать модуль числа с самим числом. Частая ошибка многих новичков. К примеру, если модуль числа −3 больше, чем модуль числа −1, это не означает, что число −3 больше, чем число −1.

Число −3 меньше, чем число −1 . Это можно понять, если воспользоваться координатной прямой

Видно, что число −3 лежит левее, чем −1 . А мы знаем, что чем левее, тем меньше.

Если сравнивать отрицательное число с положительным, то ответ будет напрашиваться сам. Любое отрицательное число будет меньше любого положительного числа. Например, −4 меньше, чем 2

Видно, что −4 лежит левее, чем 2. А мы знаем, что «чем левее, тем меньше».

Здесь в первую очередь нужно смотреть на знаки чисел. Минус перед числом будет говорить о том, что число отрицательное. Если знак числа отсутствует, то число положительное, но вы можете записать его для наглядности. Напомним, что это знак плюса

Мы рассмотрели в качестве примера целые числа, вида −4, −3 −1, 2. Сравнить такие числа, а также изобразить на координатной прямой не составляет особого труда.

Намного сложнее сравнивать другие виды чисел, такие как обыкновенные дроби, смешанные числа и десятичные дроби, некоторые из которых являются отрицательными. Здесь уже в основном придётся применять правила, потому что точно изобразить такие числа на координатной прямой не всегда возможно. В некоторых случаях, число надо будет , чтобы сделать его более простым для сравнения и восприятия.

Пример 1. Сравнить рациональные числа

Итак, требуется сравнить отрицательное число с положительным. Любое отрицательное число меньше любого положительного числа. Поэтому не теряя времени отвечаем, что меньше, чем

Пример 2.

Требуется сравнить два отрицательных числа. Из двух отрицательных чисел больше то, модуль которого меньше.

Находим модули чисел:

Сравниваем найденные модули:

Пример 3. Сравнить числа 2,34 и

Требуется сравнить положительное число с отрицательным. Любое положительное число больше любого отрицательного числа. Поэтому не теряя времени отвечаем, что 2,34 больше, чем

Пример 4. Сравнить рациональные числа и

Находим модули чисел:

Сравниваем найденные модули. Но сначала приведём их к понятному виду, чтобы проще было сравнить, а именно переведём в неправильные дроби и приведём к общему знаменателю

Согласно правилу, из двух отрицательных чисел больше то число, модуль которого меньше. Значит рациональное больше, чем , потому что модуль числа меньше, чем модуль числа

Пример 5.

Требуется сравнить ноль с отрицательным числом. Ноль больше любого отрицательного числа, поэтому не теряя времени отвечаем, что 0 больше, чем

Пример 6. Сравнить рациональные числа 0 и

Требуется сравнить ноль с положительным числом. Ноль меньше любого положительного числа, поэтому не теряя времени отвечаем, что 0 меньше, чем

Пример 7 . Сравнить рациональные числа 4,53 и 4,403

Требуется сравнить два положительных числа. Из двух положительных чисел больше то число, модуль которого больше.

Сделаем в обеих дробях количество цифр после запятой одинаковым. Для этого в дроби 4,53 припишем в конце один ноль

Находим модули чисел

Сравниваем найденные модули:

Согласно правилу, из двух положительных чисел больше то число, модуль которого больше. Значит рациональное число 4,53 больше, чем 4,403 потому что модуль числа 4,53 больше, чем модуль числа 4,403

Пример 8. Сравнить рациональные числа и

Требуется сравнить два отрицательных числа. Из двух отрицательных чисел больше то число, модуль которого меньше.

Находим модули чисел:

Сравниваем найденные модули. Но сначала приведём их к понятному виду, чтобы проще было сравнить, а именно переведём смешанное число в неправильную дробь, затем приведём обе дроби к общему знаменателю:

Согласно правилу, из двух отрицательных чисел больше то число, модуль которого меньше. Значит рациональное больше, чем , потому что модуль числа меньше, чем модуль числа

Сравнивать десятичные дроби намного проще, чем обыкновенные дроби и смешанные числа. В некоторых случаях, посмотрев на целую часть такой дроби, можно сразу ответить на вопрос какая дробь больше, а какая меньше.

Чтобы сделать это, нужно сравнить модули целых частей. Это позволит быстро ответить на вопрос в задаче. Ведь как известно, целые части в десятичных дробях имеют вес больший, чем дробные.

Пример 9. Сравнить рациональные числа 15,4 и 2,1256

Модуль целой части дроби 15,4 больше, чем модуль целой части дроби 2,1256

поэтому и дробь 15,4 больше, чем дробь 2,1256

15,4 > 2,1256

Другими словами, нам не пришлось тратить время на дописывание нулей дроби 15,4 и сравнивать получившиеся дроби, как обычные числа

154000 > 21256

Правила сравнения остаются всё теми же. В нашем случае мы сравнивали положительные числа.

Пример 10. Сравнить рациональные числа −15,2 и −0,152

Требуется сравнить два отрицательных числа. Из двух отрицательных чисел больше то число, модуль которого меньше. Но мы сравним только модули целых частей

Видим, что модуль целой части дроби −15,2 больше, чем модуль целой части дроби −0,152.

А значит рациональное −0,152 больше, чем −15,2 потому что модуль целой части числа −0,152 меньше, чем модуль целой части числа −15,2

−0,152 > −15,2

Пример 11. Сравнить рациональные числа −3,4 и −3,7

Требуется сравнить два отрицательных числа. Из двух отрицательных чисел больше то число, модуль которого меньше. Но мы сравним только модули целых частей. Но проблема в том, что модули целых чисел равны:

В этом случае придётся пользоваться старым методом: найти модули рациональных чисел и сравнить эти модули

Сравниваем найденные модули:

Согласно правилу, из двух отрицательных чисел больше то число, модуль которого меньше. Значит рациональное −3,4 больше, чем −3,7 потому что модуль числа −3,4 меньше, чем модуль числа −3,7

−3,4 > −3,7

Пример 12. Сравнить рациональные числа 0,(3) и

Требуется сравнить два положительных числа. Причем сравнить периодическую дробь с простой дробью.

Переведём периодическую дробь 0,(3) в обыкновенную дробь и сравним её с дробью . После перевода периодической дроби 0,(3) в обыкновенную, она обращается в дробь

Находим модули чисел:

Сравниваем найденные модули. Но сначала приведём их к понятному виду, чтобы проще было сравнить, а именно приведём к общему знаменателю:

Согласно правилу, из двух положительных чисел больше то число, модуль которого больше. Значит рациональное число больше, чем 0,(3) потому что модуль числа больше, чем модуль числа 0,(3)

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках


В этой статье дается подробный обзор наиболее важных моментов, касающихся сравнения рациональных чисел . Если знаки сравниваемых чисел различны, то можно сразу сказать, какое число больше, а какое меньше, поэтому в самом начале мы разберем правило сравнения рациональных чисел с разными знаками. Дальше остановимся на сравнении нуля с другим рациональным числом. После этого подробно остановимся на сравнении положительных рациональных чисел. Наконец, перейдем к правилу сравнения отрицательных рациональных чисел. Теорию будем разбавлять решениями характерных примеров.

Навигация по странице.

Сравнение рациональных чисел с разными знаками

Проще всего выполнить сравнение двух рациональных чисел, имеющих разные знаки . При этом используется правило сравнения чисел с разными знаками : любое положительное число больше любого отрицательного, а любое отрицательное число меньше положительного.

Например, из двух рациональных чисел 5/7 и −0,25 больше число 5/7 , так как оно положительное, а меньше число −0,25 , так как оно отрицательное. Еще пример: отрицательное рациональное число меньше, чем положительное рациональное число 0,000(1) .

Сравнение рационального числа с нулем

Очень просто проводится сравнение нуля с рациональным числом , отличным от нуля. При этом справедливо правило: любое положительное число больше нуля, а любое отрицательное число меньше нуля.

Приведем пару примеров сравнения рационального числа с нулем. Число 4/9 больше, чем 0 , так как 4/9 – положительное число, с другой стороны 0 меньше, чем 4/9 . Еще пример: число 0 больше, чем отрицательное рациональное число −45,5 , с другой стороны число −45,5 меньше нуля.

Также нужно сказать, про сравнение нуля с нулем : нуль равен нулю, то есть, 0=0 .

Здесь нужно заметить, что число нуль может быть записано в виде, отличном от 0 . Действительно, числу 0 отвечает любая запись вида 0/n , где n – любое натуральное число, или записи 0,0, 0,00, … , вплоть до 0,(0) . То есть, например, при сравнении двух рациональных чисел, записи которых имеют вид 0,00 и 0/3 , заключаем, что они равны, так как эти записи отвечают числам 0 и 0 соответственно.

Сравнение положительных рациональных чисел

Сравнение положительных рациональных чисел следует начинать со сравнения их целых частей. При этом используется следующее правило: больше то число, целая часть которого больше, а меньше то число, целая часть которого меньше.

Пример.

Какое из рациональных чисел 0,76 и больше?

Решение.

Сравниваемые рациональные числа положительные, причем достаточно очевидно, что целая часть числа 0,76 , равная нулю, меньше целой части числа , равной двум (при необходимости смотрите сравнение целых чисел). Следовательно, , значит, из двух исходных чисел больше число .

Ответ:

Нюансы в применении указанного выше правила могут возникнуть лишь тогда, когда одним из сравниваемых чисел является периодическая десятичная дробь с периодом 9 , о чем мы упоминали в разделе равные и неравные десятичные дроби .

Пример.

Сравните рациональные числа 15 и 14,(9) .

Решение.

Периодическая дробь с периодом 9 вида 14,(9) является лишь одной из форм записи числа 15 . То есть, 15=14,(9) .

Ответ:

Исходные рациональные числа равны.

Если же целые части сравниваемых рациональных чисел равны, итоговый результат сравнения поможет получить сравнение дробных частей. Дробную часть рационального числа всегда можно представить в виде обыкновенной дроби m/n , а также в виде конечной или периодической десятичной дроби . Таким образом, сравнение дробных частей двух положительных рациональных чисел всегда можно свести к сравнению обыкновенных дробей или к сравнению десятичных дробей . В итоге из двух положительных рациональных чисел с равными целыми частями больше то, дробная часть которого больше, а меньше то – дробная часть которого меньше.

Пример.

Проведите сравнение положительных рациональных чисел 3,7 и .

Решение.

Очевидно, целые части сравниваемых рациональных чисел равны 3=3 . Переходим к сравнению дробных частей, то есть, к сравнению чисел 0,7 и 2/3 .

Покажем два способа.

В первом из осуществим перевод десятичной дроби в обыкновенную : 0,7=7/10 . Приходим к сравнению обыкновенных дробей 7/10 и 2/3 . После их приведения к общему знаменателю 30 получаем , откуда следует, что и . Следовательно, .

Во втором варианте решения выполним перевод обыкновенной дроби в десятичную , имеем . Так от сравнения 0,7 и 2/3 мы пришли к сравнению десятичных дробей 0,7 и 0,(6) , результат которого таков: 0,7>0,(6) . Следовательно, и .

Очевидно, оба способа нас привели к одинаковому результату сравнения исходных рациональных чисел.

Ответ:

Если равны и целые и дробные части сравниваемых положительных рациональных чисел, то эти числа равны.

Пример.

Сравните числа 4,5 и .

Решение.

Очевидно, целые части чисел равны. Дробная часть числа 4,5 равна 0,5 , перевод этой десятичной дроби в обыкновенную дает 1/2 . Таким образом, дробные части исходные чисел тоже равны. Следовательно, исходные рациональные числа равны.

Ответ:

Закончим этот пункт следующим утверждением: если записи сравниваемых чисел полностью совпадают, то эти числа равны. Действительно, в этом случае равны и целые части и дробные части сравниваемых чисел. Например, равными являются рациональные числа 5,698 и 5,698 , также равны числа и .

Сравнение отрицательных рациональных чисел

Сравнение отрицательных рациональных чисел подчиняется правилу сравнения отрицательных чисел : из двух отрицательных чисел больше то, модуль которого меньше, и меньше то, модуль которого больше.

Это правило сводит сравнение отрицательных рациональных чисел к сравнению положительных рациональных чисел, разобранному в предыдущем пункте.

Вариант 1

F (–5,78).

а) –5,78; б) 5,78; в) 5; г) другой ответ.

M (–3) и N (1) координатной прямой.

а) 2; б) 3; в) 4; г) другой ответ.

3. Сколько натуральных чисел на координатной прямой между числами –4 и 8,6?

а) 11; б) 12; в) 13; г) другой ответ.

4. Какие целые числа расположены на координатной прямой между числами –2,3 и 2,78?

а) 1; 2; б) 0; 1; 2; в) –2; –1; 0; 1; 2; г) другой ответ.

а) 8; б) 18; в) 13; г) другой ответ.

6. Сравните модули чисел –47,2 и –47,8.

а) |–47,2| =| –47,8|; б) |–47,2| < |–47,8|; в) |–47,2| > |–47,8|; г) нельзя сравнить.

7. Сравните числа

а) ; б) ; в) ; г) нельзя сравнить.

8. Расположите числа 3; –2,5; 1,85; –1,99; –2,49; 3,01 в порядке возрастания.

а) 3,01; 3; 1,85; –1,99; –2,5; –2,49;

б) –1,99; –2,49; –2,5; 1,85; 3; 3,01;

в) –2,5; –2,49; –1,99; 1,85; 3; 3,01;

г) другой ответ.

9. Какие цифры можно записать вместо звездочки, чтобы получилось верное неравенство ?

а) 1, 2, 3, 4; б) 0, 1, 2, 3, 4; в) 6, 7, 8, 9; г) другой ответ.

10. Найдите значения все значения х , для которых

а) –5,7; б) 5,7; в) 5,7 и –5,7; г) другой ответ.

Вариант 2

Запишите номера заданий и буквы правильных ответов.

1. Найдите расстояние от начала координат до точки G (–6,7).

а) –6,7; б) 6,7; в) 6; г) другой ответ.

2. Найдите расстояние в единичных отрезках между точками P (–2) и S (4) координатной прямой.

а) 6; б) 2; в) 8; г) другой ответ.

3. Сколько натуральных чисел расположено на координатной прямой между числами –2 и 7,02?

а) 9; б) 8; в) 7; г) другой ответ.

4. Какие целые числа расположены на координатной прямой между числами –3,7 и 2,9?

а) 1; 2; б) 0; 1; 2; в) –3;–2; –1; 0; 1; 2; г) другой ответ.

5. Найдите значение выражения

а) 6; б) 5; в) 20; г) другой ответ.

6. Сравните модули чисел –52,9 и –52,3.

а) –|52,9| = |–52,3|; б) |–52,9| < |–52,3|; в) |–52,9| > |–52,3|; г) нельзя сравнить.

7. Сравните числа .

а) ; б) ; в) ; г) нельзя сравнить.

1. Какие числа пропущены? а) 497, 498, ..., 500; б) 902, 901, ..., 899. Что означает каждая цифра в записи чисел 902 и 498?
Назовите соседние числа для числа 498, последующее число для числа 899, предыдущее для числа 700.


2. Сравните (>, 799 * 800 701 * 703
65 * 67 650 * 648
Как сравнить многозначные числа?


3. Железный Дровосек учил Страшилу сравнивать числа с помощью числового отрезка. Ему нужно было сравнить числа 231 и 233. Он сделал это так. Результат записал: 231 Страшила тоже учил Железного Дровосека сравнивать числа. Он сказал, что может сравнивать числа по разрядам.
Например: 54 700; 370 ; 698 * 798 456 * 458
712 * 721 534 * 367


4. Сравните


5. Выразите
а) в сотнях: 900, 700, 200, 500, 400;
б) в десятках: 60, 120, 240, 400.


6. Элли придумала задачу и составила таблицу. Каким мог быть текст этой задачи?


7. Подберите значения переменных и решите задачу разными способами.
Мигуны подарили Храброму Льву 3 золотых колокольчика массой а кг каждый и столько же золотых ошейников массой с кг каждый. Чему равна масса всех этих подарков?


8. На какие группы можно разбить подарки Мигунов? Чему равен объём коробки, если её длина 5 дм, ширина 30 см, высота 200 мм? Выразите объём в кубических дециметрах. Пятую часть коробки занимает золотая шапка Бастинды. Чему равен объём этой части коробки?

Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме