Подпишись и читай
самые интересные
статьи первым!

Повторные независимые испытания схема и формула бернулли. Испытания по схеме бернулли


Определение повторных независимых испытаний. Формулы Бернулли для вычисления вероятности и наивероятнейшего числа. Асимптотические формулы для формулы Бернулли (локальная и интегральная, теоремы Лапласа). Использование интегральной теоремы. Формула Пуассона, для маловероятных случайных событий.

Повторные независимые испытания

На практике приходится сталкиваться с такими задачами, которые можно представить в виде многократно повторяющихся испытаний, в результате каждого из которых может появиться или не появиться событие A . При этом интерес представляет исход не каждого "отдельного испытания, а общее количество появлений события A в результате определенного количества испытаний. В подобных задачах нужно уметь определять вероятность любого числа m появлений события A в результате n испытаний. Рассмотрим случай, когда испытания являются независимыми и вероятность появления события A в каждом испытании постоянна. Такие испытания называются повторными независимыми.

Примером независимых испытаний может служить проверка на годность изделий, взятых по одному из ряда партий. Если в этих партиях процент брака одинаков, то вероятность того, что отобранное изделие будет бракованным, в каждом случае является постоянным числом.

Формула Бернулли

Воспользуемся понятием сложного события , под которым подразумевается совмещение нескольких элементарных событий, состоящих в появлении или непоявлении события A в i –м испытании. Пусть проводится n независимых испытаний, в каждом из которых событие A может либо появиться с вероятностью p , либо не появиться с вероятностью q=1-p . Рассмотрим событие B_m , состоящее в том, что событие A в этих n испытаниях наступит ровно m раз и, следовательно, не наступит ровно (n-m) раз. Обозначим A_i~(i=1,2,\ldots,{n}) появление события A , a \overline{A}_i - непоявление события A в i –м испытании. В силу постоянства условий испытания имеем

Событие A может появиться m раз в разных последовательностях или комбинациях, чередуясь с противоположным событием \overline{A} . Число возможных комбинаций такого рода равно числу сочетаний из n элементов по m , т. е. C_n^m . Следовательно, событие B_m можно представить в виде суммы сложных несовместных между собой событий, причем число слагаемых равно C_n^m :

B_m=A_1A_2\cdots{A_m}\overline{A}_{m+1}\cdots\overline{A}_n+\cdots+\overline{A}_1\overline{A}_2\cdots\overline{A}_{n-m}A_{n-m+1}\cdots{A_n},


где в каждое произведение событие A входит m раз, а \overline{A} - (n-m) раз.

Вероятность каждого сложного события, входящего в формулу (3.1), по теореме умножения вероятностей для независимых событий равна p^{m}q^{n-m} . Так как общее количество таких событий равно C_n^m , то, используя теорему сложения вероятностей для несовместных событий, получаем вероятность события B_m (обозначим ее P_{m,n} )

P_{m,n}=C_n^mp^{m}q^{n-m}\quad \text{or}\quad P_{m,n}=\frac{n!}{m!(n-m)!}p^{m}q^{n-m}.

Формулу (3.2) называют формулой Бернулли , а повторяющиеся испытания, удовлетворяющие условию независимости и постоянства вероятностей появления в каждом из них события A , называют испытаниями Бернулли , или схемой Бернулли .

Пример 1. Вероятность выхода за границы поля допуска при обработке деталей на токарном станке равна 0,07. Определить вероятность того, что из пяти наудачу отобранных в течение смены деталей у одной размеры диаметра не соответствуют заданному допуску.

Решение. Условие задачи удовлетворяет требования схемы Бернулли. Поэтому, полагая n=5,\,m=1,\,p=0,\!07 , по формуле (3.2) получаем

P_{1,5}=C_5^1(0,\!07)^{1}(0,\!93)^{5-1}\approx0,\!262.

Пример 2. Наблюдениями установлено, что в некоторой местности в сентябре бывает 12 дождливых дней. Какова вероятность того, что из случайно взятых в этом месяце 8 дней 3 дня окажутся дождливыми?

Решение.

P_{3;8}=C_8^3{\left(\frac{12}{30}\right)\!}^3{\left(1-\frac{12}{30}\right)\!}^{8-3}=\frac{8!}{3!(8-3)!}{\left(\frac{2}{5}\right)\!}^3{\left(\frac{3}{5}\right)\!}^5=56\cdot\frac{8}{125}\cdot\frac{243}{3125}=\frac{108\,864}{390\,625}\approx0,\!2787.

Наивероятнейшее число появлений события

Наивероятнейшим числом появления события A в n независимых испытаниях называется такое число m_0 , для которого вероятность, соответствующая этому числу, превышает или, по крайней мере, не меньше вероятности каждого из остальных возможных чисел появления события A . Для определения наивероятнейшего числа не обязательно вычислять вероятности возможных чисел появлений события, достаточно знать число испытаний n и вероятность появления события A в отдельном испытании. Обозначим P_{m_0,n} вероятность, соответствующую наивероятнейшему числу m_0 . Используя формулу (3.2), записываем

P_{m_0,n}=C_n^{m_0}p^{m_0}q^{n-m_0}=\frac{n!}{m_0!(n-m_0)!}p^{m_0}q^{n-m_0}.

Согласно определению наивероятнейшего числа, вероятности наступления события A соответственно m_0+1 и m_0-1 раз должны, по крайней мере, не превышать вероятность P_{m_0,n} , т. е.

P_{m_0,n}\geqslant{P_{m_0+1,n}};\quad P_{m_0,n}\geqslant{P_{m_0-1,n}}

Подставляя в неравенства значение P_{m_0,n} и выражения вероятностей P_{m_0+1,n} и P_{m_0-1,n} , получаем

Решая эти неравенства относительно m_0 , получаем

M_0\geqslant{np-q},\quad m_0\leqslant{np+p}

Объединяя последние неравенства, получаем двойное неравенство, которое используют для определения наивероятнейшего числа:

Np-q\leqslant{m_0}\leqslant{np+p}.

Так как длина интервала, определяемого неравенством (3.4), равна единице, т. е.

(np+p)-(np-q)=p+q=1,


и событие может произойти в n испытаниях только целое число раз, то следует иметь в виду, что:

1) если np-q - целое число, то существуют два значения наивероятнейшего числа, а именно: m_0=np-q и m"_0=np-q+1=np+p ;

2) если np-q - дробное число, то существует одно наивероятнейшее число, а именно: единственное целое, заключенное между дробными числами, полученными из неравенства (3.4);

3) если np - целое число, то существует одно наивероятнейшее число, а именно: m_0=np .

При больших значениях n пользоваться формулой (3.3) для расчета вероятности, соответствующей наивероятнейшему числу, неудобно. Если в равенство (3.3) подставить формулу Стирлинга

N!\approx{n^ne^{-n}\sqrt{2\pi{n}}},


справедливую для достаточно больших n , и принять наивероятнейшее число m_0=np , то получим формулу для приближенного вычисления вероятности, соответствующей наивероятнейшему числу:

P_{m_0,n}\approx\frac{n^ne^{-n}\sqrt{2\pi{n}}\,p^{np}q^{nq}}{(np)^{np}e^{-np}\sqrt{2\pi{np}}\,(nq)^{nq}e^{-nq}\sqrt{2\pi{nq}}}=\frac{1}{\sqrt{2\pi{npq}}}=\frac{1}{\sqrt{2\pi}\sqrt{npq}}.

Пример 2. Известно, что \frac{1}{15} часть продукции, поставляемой заводом на торговую базу, не удовлетворяет всем требованиям стандарта. На базу была завезена партия изделий в количестве 250 шт. Найти наивероятнейшее число изделий, удовлетворяющих требованиям стандарта, и вычислить вероятность того, что в этой партии окажется наивероятнейшее число изделий.

Решение. По условию n=250,\,q=\frac{1}{15},\,p=1-\frac{1}{15}=\frac{14}{15} . Согласно неравенству (3.4) имеем

250\cdot\frac{14}{15}-\frac{1}{15}\leqslant{m_0}\leqslant250\cdot\frac{14}{15}+\frac{1}{15}


откуда 233,\!26\leqslant{m_0}\leqslant234,\!26 . Следовательно, наивероятнейшее число изделий, удовлетворяющих требованиям стандарта, в партии из 250 шт. равно 234. Подставляя данные в формулу (3.5), вычисляем вероятность наличия в партии наивероятнейшего числа изделий:

P_{234,250}\approx\frac{1}{\sqrt{2\pi\cdot250\cdot\frac{14}{15}\cdot\frac{1}{15}}}\approx0,\!101

Локальная теорема Лапласа

Пользоваться формулой Бернулли при больших значениях n очень трудно. Например, если n=50,\,m=30,\,p=0,\!1 , то для отыскания вероятности P_{30,50} надо вычислить значение выражения

P_{30,50}=\frac{50!}{30!\cdot20!}\cdot(0,\!1)^{30}\cdot(0,\!9)^{20}

Естественно, возникает вопрос: нельзя ли вычислить интересующую вероятность, не используя формулу Бернулли? Оказывается, можно. Локальная теорема Лапласа дает асимптотическую формулу, которая позволяет приближенно найти вероятность появления событий ровно m раз в n испытаниях, если число испытаний достаточно велико.

Теорема 3.1. Если вероятность p появления события A в каждом испытании постоянна и отлична от нуля и единицы, то вероятность P_{m,n} того, что событие A появится в n испытаниях ровно m раз, приближенно равна (тем точнее, чем больше n ) значению функции

Y=\frac{1}{\sqrt{npq}}\frac{e^{-x^2/2}}{\sqrt{2\pi}}=\frac{\varphi(x)}{\sqrt{npq}} при .

Существуют таблицы, которые содержат значения функции \varphi(x)=\frac{1}{\sqrt{2\pi}}\,e^{-x^2/2}} , соответствующие положительным значениям аргумента x . Для отрицательных значений аргумента используют те же таблицы, так как функция \varphi(x) четна, т. е. \varphi(-x)=\varphi(x) .


Итак, приближенно вероятность того, что событие A появится в n испытаниях ровно m раз,

P_{m,n}\approx\frac{1}{\sqrt{npq}}\,\varphi(x), где x=\frac{m-np}{\sqrt{npq}} .

Пример 3. Найти вероятность того, что событие A наступит ровно 80 раз в 400 испытаниях, если вероятность появления события A в каждом испытании равна 0,2.

Решение. По условию n=400,\,m=80,\,p=0,\!2,\,q=0,\!8 . Воспользуемся асимптотической, формулой Лапласа:

P_{80,400}\approx\frac{1}{\sqrt{400\cdot0,\!2\cdot0,\!8}}\,\varphi(x)=\frac{1}{8}\,\varphi(x).

Вычислим определяемое данными задачи значение x :

X=\frac{m-np}{\sqrt{npq}}=\frac{80-400\cdot0,\!2}{8}=0.

По таблице прил, 1 находим \varphi(0)=0,\!3989 . Искомая вероятность

P_{80,100}=\frac{1}{8}\cdot0,\!3989=0,\!04986.

Формула Бернулли приводит примерно к такому же результату (выкладки ввиду их громоздкости опущены):

P_{80,100}=0,\!0498.

Интегральная теорема Лапласа

Предположим, что проводится n независимых испытаний, в каждом из которых вероятность появления события A постоянна и равна p . Необходимо вычислить вероятность P_{(m_1,m_2),n} того, что событие A появится в n испытаниях не менее m_1 и не более m_2 раз (для краткости будем говорить "от m_1 до m_2 раз"). Это можно сделать с помощью интегральной теоремы Лапласа.

Теорема 3.2. Если вероятность p наступления события A в каждом испытании постоянна и отлична от нуля и единицы, то приближенно вероятность P_{(m_1,m_2),n} того, что событие A появится в испытаниях от m_1 до m_2 раз,

P_{(m_1,m_2),n}\approx\frac{1}{\sqrt{2\pi}}\int\limits_{x"}^{x""}e^{-x^2/2}\,dx, где .

При решении задач, требующих применения интегральной теоремы Лапласа, пользуются специальными таблицами, так как неопределенный интеграл \int{e^{-x^2/2}\,dx} не выражается через элементарные функции. Таблица для интеграла \Phi(x)=\frac{1}{\sqrt{2\pi}}\int\limits_{0}^{x}e^{-z^2/2}\,dz приведена в прил. 2, где даны значения функции \Phi(x) для положительных значений x , для x<0 используют ту же таблицу (функция \Phi(x) нечетна, т. е. \Phi(-x)=-\Phi(x) ). Таблица содержит значения функции \Phi(x) лишь для x\in ; для x>5 можно принять \Phi(x)=0,\!5 .

Итак, приближенно вероятность того, что событие A появится в n независимых испытаниях от m_1 до m_2 раз,

P_{(m_1,m_2),n}\approx\Phi(x"")-\Phi(x"), где x"=\frac{m_1-np}{\sqrt{npq}};~x""=\frac{m_2-np}{\sqrt{npq}} .

Пример 4. Вероятность того, что деталь изготовлена с нарушениями стандартов, p=0,\!2 . Найти вероятность того, что среди 400 случайно отобранных деталей нестандартных окажется от 70 до 100 деталей.

Решение. По условию p=0,\!2,\,q=0,\!8,\,n=400,\,m_1=70,\,m_2=100 . Воспользуемся интегральной теоремой Лапласа:

P_{(70,100),400}\approx\Phi(x"")-\Phi(x").

Вычислим пределы интегрирования:


нижний

X"=\frac{m_1-np}{\sqrt{npq}}=\frac{70-400\cdot0,\!2}{\sqrt{400\cdot0,\!2\cdot0,\!8}}=-1,\!25,


верхний

X""=\frac{m_2-np}{\sqrt{npq}}=\frac{100-400\cdot0,\!2}{\sqrt{400\cdot0,\!2\cdot0,\!8}}=2,\!5,

Таким образом

P_{(70,100),400}\approx\Phi(2,\!5)-\Phi(-1,\!25)=\Phi(2,\!5)+\Phi(1,\!25).

По таблице прил. 2 находим

\Phi(2,\!5)=0,\!4938;~~~~~\Phi(1,\!25)=0,\!3944.

Искомая вероятность

P_{(70,100),400}=0,\!4938+0,\!3944=0,\!8882.

Применение интегральной теоремы Лапласа

Если число m (число появлений события A при n независимых испытаниях) будет изменяться от m_1 до m_2 , то дробь \frac{m-np}{\sqrt{npq}} будет изменяться от \frac{m_1-np}{\sqrt{npq}}=x" до \frac{m_2-np}{\sqrt{npq}}=x"" . Следовательно, интегральную теорему Лапласа можно записать и так:

P\left\{x"\leqslant\frac{m-np}{\sqrt{npq}}\leqslant{x""}\right\}=\frac{1}{\sqrt{2\pi}}\int\limits_{x"}^{x""}e^{-x^2/2}\,dx.

Поставим задачу найти вероятность того, что отклонение относительной частоты \frac{m}{n} от постоянной вероятности p по абсолютной величине не превышает заданного числа \varepsilon>0 . Другими словами, найдем вероятность осуществления неравенства \left|\frac{m}{n}-p\right|\leqslant\varepsilon , что то же самое, -\varepsilon\leqslant\frac{m}{n}-p\leqslant\varepsilon . Эту вероятность будем обозначать так: P\left\{\left|\frac{m}{n}-p\right|\leqslant\varepsilon\right\} . С учетом формулы (3.6) для данной вероятности получаем

P\left\{\left|\frac{m}{n}-p\right|\leqslant\varepsilon\right\}\approx2\Phi\left(\varepsilon\,\sqrt{\frac{n}{pq}}\right).

Пример 5. Вероятность того, что деталь нестандартна, p=0,\!1 . Найти вероятность того, что среди случайно отобранных 400 деталей относительная частота появления нестандартных деталей отклонится от вероятности p=0,\!1 по абсолютной величине не более чем на 0,03.

Решение. По условию n=400,\,p=0,\!1,\,q=0,\!9,\,\varepsilon=0,\!03 . Требуется найти вероятность P\left\{\left|\frac{m}{400}-0,\!1\right|\leqslant0,\!03\right\} . Используя формулу (3.7), получаем

P\left\{\left|\frac{m}{400}-0,\!1\right|\leqslant0,\!03\right\}\approx2\Phi\left(0,\!03\sqrt{\frac{400}{0,\!1\cdot0,\!9}}\right)=2\Phi(2)

По таблице прил. 2 находим \Phi(2)=0,\!4772 , следовательно, 2\Phi(2)=0,\!9544 . Итак, искомая вероятность приближенно равна 0,9544. Смысл полученного результата таков: если взять достаточно большое число проб по 400 деталей в каждой, то примерно в 95,44% этих проб отклонение относительной частоты от постоянной вероятности p=0,\!1 по абсолютной величине не превысит 0,03.

Формула Пуассона для маловероятных событий

Если вероятность p наступления события в отдельном испытании близка к нулю, то даже при большом числе испытаний n , но при небольшом значении произведения np получаемые по формуле Лапласа значения вероятностей P_{m,n} оказываются недостаточно точными и возникает потребность в другой приближенной формуле.

Теорема 3.3. Если вероятность p наступления события A в каждом испытании постоянна, но мала, число независимых испытаний n достаточно велико, но значение произведения np=\lambda остается небольшим (не больше десяти), то вероятность того, что в этих испытаниях событие A наступит m раз,

P_{m,n}\approx\frac{\lambda^m}{m!}\,e^{-\lambda}.

Для упрощения расчетов с применением формулы Пуассона составлена таблица значений функции Пуассона \frac{\lambda^m}{m!}\,e^{-\lambda} (см. прил. 3).

Пример 6. Пусть вероятность изготовления нестандартной детали равна 0,004. Найти вероятность того, что среди 1000 деталей окажется 5 нестандартных.

Решение. Здесь n=1000,p=0,004,~\lambda=np=1000\cdot0,\!004=4 . Все три числа удовлетворяют требованиям теоремы 3.3, поэтому для нахождения вероятности искомого события P_{5,1000} применяем формулу Пуассона. По таблице значений функции Пуассона (прил. 3) при \lambda=4;m=5 получаем P_{5,1000}\approx0,\!1563 .

Найдем вероятность того же события по формуле Лапласа. Для этого сначала вычисляем значение x , соответствующее m=5 :

X=\frac{5-1000\cdot0,\!004}{\sqrt{1000\cdot0,\!004\cdot0,\!996}}\approx\frac{1}{1,\!996}\approx0,\!501.

Поэтому согласно формуле Лапласа искомая вероятность

P_{5,1000}\approx\frac{\varphi(0,\!501)}{1,\!996}\approx\frac{0,\!3519}{1,\!996}\approx0,\!1763


а согласно формуле Бернулли точное ее значение

P_{5,1000}=C_{1000}^{5}\cdot0,\!004^5\cdot0,\!996^{995}\approx0,\!1552.

Таким образом, относительная ошибка вычисления вероятностей P_{5,1000} по приближенной формуле Лапласа составляет

\frac{0,\!1763-0,\!1552}{0,\!1552}\approx0,\!196 , или 13,\!6\%


а по формуле Пуассона -

\frac{0,\!1563-0,\!1552}{0,\!1552}\approx0,\!007 , или 0,\!7\%

Т. е. во много раз меньше.
Перейти к следующему разделу
Одномерные случайные величины
В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Ранее в п. 1.4 введены понятия зависимых и независимых событий. С понятием независимых событий связано и имеет широкое применение понятие независимых опытов или испытаний.

Опыты α 1 , α 2 , … , α n называются независимыми, если любая комбинация их исходов является совокупностью независимых событий. Иначе, если в задаче проводится ряд многократно повторяющихся испытаний α 1 , α 2 , …, α n при неизменном комплексе условий и в каждом испытании некоторые событие А может наступить с некоторой вероятностью p = p (А ) не зависящей от других испытаний, и не наступить с вероятностью p (Ā ), то указанные испытания называются независимыми. Данная схема независимых испытаний носит название схемы Бернулли.

Схема названа в честь Якоба Бернулли – родоначальника семьи выдающихся швейцарских учёных. (Якоб Б., Иоганн Б., Николай Б., Даниил Б. и др.). Якоб Бернулли доказал так называемую теорему Бернулли – важный частный случай закона больших чисел (см. п. 3.11). Указанная теорема относится к рассматриваемой здесь последовательности независимых испытаний.

Примерами независимых испытаний являются: а) многократное (n раз) подбрасывание монеты; б) извлечение (n раз) одинаковых на ощупь шаров из урны с их последующим возвращением; в) любая совокупность независимых испытаний (опытов), в каждом из которых вероятность успешных исходов одинакова, например, серия выстрелов по мишени, выбор n деталей из их совокупности, изучение n анализов горной породы определённого свойства и т.д.

В схеме Бернулли наступление события А с вероятностью p = p (А ) условно называется успехом, а его ненаступление (противоположное событие Ā ) –неудачей. Вероятность неудачи в каждом опыте такого типа равна q = 1 – p .

На практике обычно возникают задачи со сложными событиями, в которых из n опытов, составляющих схему Бернулли, в m опытах (m < n ) событие А наступает (т.е завершается успехом), а в (n m ) опытах это событие не наступает (завершается неудачей). Пусть P n (k ) – обозначает вероятность того, что при производстве n опытов успех наступает в k опытах (успех реализуется k раз). Ставится следующая задача: пусть в n испыта-ниях, соответствующих схеме Бернулли, k испытаний завершились успехом. Требуется найти вероятность P n (k ) (читается: « P из n испытаний k успешных» ). Данная вероятность рассчитывается по формуле Бернулли, которой соответствует одноименная теорема.

Теорема Бернулли. Если вероятность p наступления события А в каждом из последовательности n испытаний α 1 , α 2 , … , α n постоянна, то вероятность того, что событие А наступит k раз и не наступит n k раз, вычисляется по формуле Бернулли:

P n (k ) = С n k p k q n-k , (2.1)

где q = 1- p .

Доказательство. Действительно, пусть события A į и Ā į – появление и непоявление соответственно события А в į -ом испытании α i (i = 1, 2, … , n ). Пусть также В k обозначает событие, состоящее в том, что в n независимых испытаниях событие А появилось k раз. При n = 3 и k = 2 событие В 2 выражается через элементарные события А į (į = 1, 2, 3) по формуле:

В 2 = А 1 А 2 Ā 3 + А 1 Ā 2 А 3 + Ā 1 А 2 А 3 .

В общем виде последняя формула будет такой

т.е каждый член суммы (2.2) соответствует появлению события А k раз и (n k ) раз непоявлений. Число всех комбинаций (слагаемых) в (2.2) равно числу способов выбора из n испытаний k испытаний, в которых событие А произошло, т.е числу сочетаний C n k . Вероятность каждой такой комбинации по теореме умножения вероятностей независимых событий равна p k × q n k , так как p (А į) = p , p (Ā į) = q , i = 1,2,…,n . Но комбинации в (2.2) являются несовместными событиями. Поэтому по теореме сложения вероятностей получим

Таким образом, имеет место формула Бернулли

P n (k) = C n k p k q n-k .

Что и требовалось доказать.

Замечание 1. Сформулированная выше теорема относится к случаю, когда в каждом испытании вероятность появления события А постоянна. Тогда для расчета вероятности P n (k ) справедлива формула Бернулли (2.1). Если же вероятности наступления события А в испытаниях α 1 , α 2 , … , α n разные, т.е. вероятности составляют значения p 1 , p 2 , … , p n , то тогда вместо (2.1) справедлива формула:

Замечание 6. Вероятность того, что в n опытах, проводящихся по схеме Бернулли, успех наступит от k 1 до k 2 раз , вычисляется по формулеP n (k )) для конкретных значений n и p . Так как аргумент k принимает лишь целые значения, график представляется в виде точек на плоскости (k , P n (k )). Для наглядности точки соединяются ломаной линией, и такой график называется полигоном распределения (рис.2.1). При p = 0,5, n = 6, как показано на рисунке 2.1, полигон симметричен относительно прямой x = np (если p близко к 0,5, то полигон близок к симметричному). При малых p полигон существенно асимметричен, и наивероятнейшими явля-ются частоты, близкие к нулю. На рисунке 2.2 изображен полигон распределения для p = 0,2 при числе испытаний n = 6. При больших p , близких к 1, наиболее вероятны максимальные значения. На рис. 2.3 показан полигон распределения, для p = 0,8 и n = 6.

Рис. 2.3.

Опыты называются независимыми, если вероятность того или иного исхода каждого опыта не зависит от того, какие исходы имели другие опыты.

Замечание. Независимые опыты могут производиться как в одинаковых условиях, так и в различных. В первом случае вероятность появления какого-то события А во всех опытах одна и та же, во втором случае она меняется от опыта к опыту.

Пусть теперь производится n независимых опытов, в каждом из которых с одной и той же вероятностью p может наступить некоторое событие А . Требуется найти вероятность Р n (к) того, что в n опытах событие А наступит ровно к раз (событие В ).

Описанная схема называется схемой независимых испытаний, или схемой Бернулли, по имени швейцарского математика конца XVII и начала XVIII века Якоба Бернулли, изучавшего её.

Найдем вероятность Р n (к) . Событие В можно представить в виде суммы ряда элементарных событий – вариантов события А . Каждый вариант события А можно записать в виде строки длиной n (число опытов), в которой к компонент соответствуют событию А , а остальные n-к компонент событию . Например, один из возможных вариантов есть

(успех и 1,2,…,k -м опытах и неудача в остальных).

Число всех вариантов равно (числу сочетаний из n элементов по к ), а вероятность каждого варианта в виду независимости опытов равна р к q n -к (где q =1-р ). Отсюда вероятность события В будет равна

Формула (1) носит название формулы Бернулли .

Отсюда следует, что вероятность, хотя бы одного появления события А при n независимых испытаниях (опытах) в одинаковых условиях равна

Пример 1 . Монета бросается 5 раз. Какова вероятность того, что герб выпадет при этом 3 раза?

Решение . В данном случае событием А считается выпадение герба, вероятность p этого события в каждом опыте равна . Отсюда

P = .

Для наглядности условимся каждое наступление события А рассматривать как успех. Если зафиксировать n , то, Р n (к) . есть функция аргумента к , принимающая значения . Выясним, при каком значении к функция Р n (к) принимает наибольшее значение, т.е., какое число успехов к 0 является наиболее вероятным при данном числе опытов n . Оказывается что число к=к 0 можно определить из двойного неравенства.

(3)

Разность граничных значений в этом двойном неравенстве равна 1. Если np+p не является целым числом, то двойное неравенство определяет лишь одно наивероятнейшее значение к 0 .Если же np+p – целое число, то имеются два наивероятнейших значения: и .

Пример 2 . Игральную кость бросают 20 раз. Каково наиболее вероятное число выпадений грани «6» ?

Решение. В данном случае n = 20, откуда . Поскольку nр + р не целое число, то наибольшим среди чисел Р 20 (0), Р 20 (1),…, Р 20 (20) будет число Р 20 (3). Следовательно, наиболее вероятное число выпадений грани «6» будет 3. Найдём, чему равна вероятность такого числа выпадений. По формуле Бернулли имеет:


.

Из формулы (3) видно, что одно из двух ближайших к целых чисел является наиболее вероятным числом успехов.

Оказывается, число допускает и другую интерпретацию. А именно: можно рассматривать, в определенном смысле, как среднее число успехов в n опытах . Будем исходить из частотного истолкования вероятности. Назовем (для краткости) n - кратное повторение данного опыта серией. Пусть мы произвели N серий. Пусть в первой серии было получено к 1 успехов, во второй – к 2 , ….., в N -ой –к N . Составим среднее арифметическое этих чисел

. (4)

Равенство (4) - есть среднее число успехов в N сериях. Оказывается, что с увеличением N указанное среднее арифметическое приближается к некоторому постоянному значению, а именно к числу np .

Действительно запишем (4) в виде:

. (5)

Поскольку каждая серия состоит из n опытов, то производя N серий мы осуществляем данный опыт раз.

Написанная дробь (5) со знаменателем Nn есть нечто иное как отношение общего числа успехов в этих опытах к числу всех опытов. С увеличением N (а значит, и Nn ) эта дробь будет приближаться к числу р - вероятности успеха. Следовательно, число (4) будет приближаться к рn , что и требовалось получить.

Пример 3 . Станок штампует изделия. Вероятность р брака одного изделия равна 0,05. Чему равно среднее число бракованных изделий на сотню?

Решение . Искомое число бракованных изделий равно: .

Замечание 1. Можно рассмотреть более общую схему независимых испытаний. Рассмотрим n независимых испытаний (в различных условиях), причём вероятность события А («успеха») в i -ом опыте равна p i , a q i =1-p i – вероятность неуспеха в i -м испытании (i =1,2,…,n ). Тогда можно показать, что вероятность P n (к) того, что событие А появится в этих n опытах ровно к раз, равна коэффициенту при z k в разложении по степеням z функции

Такую схему независимых испытаний называют схемой Пуассона . Схема Пуассона при p i =p превращается в схему Бернулли. Вероятности P n (к) в схеме Пуассона не записываются в компактном виде аналогичной формуле(1). Из (6) , например, следует:

Замечание 2. Схемы Бернулли и Пуассона допускают обобщение на тот случай, когда в результате каждого опыта возможные не два исхода (А или ), а несколько исходов.

Если производится n независимых опытов (схема Бернулли) причём каждый опыт может иметь к исключающих друг друга исходов , с вероятностями , то вероятность того, что в m 1 опытах появится событие А 1 , в m 2 опытах событие А 2 и т.д., в m k опытах событие А к выражается формулой

Если условия опыта различны (схема Пуассона), т.е.

в i- омопыте событие A j имеет вероятность p ji (i =1,2,…,n ; j =1,2,…,k ), то вероятность вычисляется как коэффициент при члене в разложении по степеням функции:

Пример 4. Завод изготавливает изделия, каждое из которых подвергается четырём видам испытаний. Первое испытание изделия проходит благополучно с вероятностью 0,9; второе с вероятностью 0,95; третье-0,8 и четвертое-0,85. Найти вероятность того, что изделие пройдет благополучно:

A- все четыре испытания

B- ровно два испытания (из четырех)

C- не менее двух испытании (из четырех)

Решение. В условиях задачи проводятся четыре независимых опыта (испытания) в различных условиях. Вероятность события. А – испытание прошло благополучно, в каждом опыте разное. Искомые вероятности находим из формулы (6)

Отсюда получаем:

§12. Вероятности P n (к) при больших значениях n . Приближённые формулы Лапласа и Пуассона.

В приложениях часто возникает необходимость в вычислении вероятностей Р n (к) для весьма больших значений n и k . Рассмотрим, например, такую задачу.

Задача. На некотором предприятии вероятность брака, равна 0,02. Обследуются 500 изделий готовой продукции. Найти вероятность того, что среди них окажется ровно 10 бракованных.

Рассматривая обследование каждого изделия как отдельный опыт, можно сказать, что производиться 500 независимых опытов, причем в каждом их них событие А (изделие оказалось бракованным) наступает с вероятностью 0,02, тогда по формуле Бернулли получаем

Непосредственный подсчет этого выражения представляется сложным. Ещё большую трудность пришлось бы испытать, если бы мы искали вероятность того, что число бракованных изделий среди 500 окажется в пределах, скажем, от 10 до 20. В этом случае потребовалось бы вычислить сумму , что является более сложным делом.

Задачи подобного рода встречаются в приложениях весьма часто. Поэтому возникает необходимость в отыскании приближённых формул для вероятностей Р n (к) , а также для сумм вида

(1)

при больших n .

1. Приближённые формулы Лапласа. Их используют при больших n (порядка сотен или тысяч), вероятностей p или q не слишком близким к 0 или 1 (порядка сотых долей). Обычно условием применения этих приближений является условие npq >9.

а) Локальная приближённая формула Лапласа . При больших n справедливо равенство.

, (2)

где , а φ (х ) обозначает следующую функцию: .

Заметим, что функция φ(х) табулирована, т.е. для нее составлена таблица её значений.

Вторая приближённая формула Лапласа даёт приближённые значения для величины -вероятности того, что число наступлений события А в n опытах (число «успехов») окажется заключенным между заданными границами к 1 и к 2 .

б) Интегральная приближённая формула Лапласа . При больших n справедливо приближённое равенство

, (3)

где Φ(х) обозначает следующую функцию

. (4)

Функция Φ(х) обладает следующими полезными для вычисления свойствами:

1. Φ(х) – нечётная функция: ,

2. при возрастании х от 0 до ∞ функция Φ(х) растет от 0

до 0,5, причем уже при х = 5 значение функции Φ(х)

отличается от 0,5 меньше чем на (т.е. при функция Ф(x) практически равна 0,5).

Пример 1. Монету бросают 100 раз. Какова вероятность того, что герб выпадет ровно 50 раз?

Решение . Имеем: npq = 100· · = 25>9. Воспользовавшись приближённой формулой (2), получим. . Из таблицы для функции φ(x) найдем, что φ(0) = 0,3989…. Отсюда получаем .

Пример 2 . Доведём до конца решение задачи, приведённой в начале этого параграфа. В ней требовалось найти , а также вероятность P 500 (10≤ к ≤20).

Решение. В данном случае npq = 500·0,02·0,98=9,8. Воспользовавшись приближёнными формулами (2) и (3), получим: ,

Замечание. Если мы осуществляем опыт n раз и k - число наступлений события А при этом, то, вообще говоря, дробь -относительная частота наступления события

А – будет близка к р (вероятности события А ). Однако сколь тесной окажется эта близость, предугадать невозможно.

Интегральная теорема Лапласа позволяет оценить вероятность неравенства при достаточно больших n и значениях р не слишком близких к 0 или 1, т.е. определить вероятность того, что отклонение частоты случайного события от его вероятности р по абсолютной величине не превосходит некоторого . Имеем

Таким образом, получаем

(5)

Вероятность в этом случае называют надёжностью оценки , а сама оценка доверительной оценкой частоты с надёжностью .

На практике надёжность оценки задаётся заранее. Тогда по заданной надёжности можно найти соответствующее значение из уравнения с помощью таблиц функции Лапласа. В этом случае доверительная оценка с заданной надёжностью примет вид р или q к нулю, поэтому, в этом случае используют приближённые формулы Пуассона. При больших n (порядка тысяч, десятков тысяч и больше) и малых р (порядка тысячных долей и меньше) справедливы приближённые равенства. Обычно условием применения этих приближений является условие npq <9.

, (7).

, (8)

где λ =np .

Особенностью формул (7) и (8) является то, что для того, чтобы найти вероятность того или иного числа успехов, вовсе не требуется знать n и р . Всё определяется числом λ=np , которое является (см. §11) средним числом успехов .

Для выражения , рассматриваемого как функция двух переменных к и λ, составлены таблицы значений.

Пример 5 . Прядильщица обслуживает 1000 веретён. Вероятность обрыва нити на одном веретене в течение одной минуты равна 0,004. Найти вероятность того, что в течение одной минуты обрыв произойдет в пяти веретенах.

Решение. Формула Бернулли приведёт к громоздким вычислениям, поэтому воспользуемся формулой Пуассона (7). Здесь к = 5, р =0.004, n = 1000, тогда λ = np = 4.

Отсюда: .

Пример 6 . Книга в 1000 страниц имеет 100 опечаток. Какова вероятность того, что на случайно выбранной странице будет не менее четырёх опечаток (событие В ).

Решение: Среднее количество опечаток на одну страницу есть . В данном случае следует применить формулу Пуассона. Тогда вероятность p к иметь к опечаток на одной странице будет равна .

Сумма р = p 0 +p 1 +p 2 +p 3 есть вероятность того, что на странице окажется не более трёх опечаток. Пользуясь таблицами (или калькулятором) получаем р = 0,999996 (в данном случае мы пользовались калькулятором, таблицы дадут р =0,9048+0,0905+0,0045+0,0002=1). Вероятность того, что на случайно выбранной странице будет не менее четырёх опечаток, равна 1-р =1-0,999996=0,0000004 (таблицы дадут 1-р =1-1=0). Отсюда можно сделать вывод, что событие В практически невозможно.

Повторные независимые испытания называются испытаниями Бернулли, если каждое испытание имеет только два возможных исхода и вероятности исходов остаются неизменными для всех испытаний.

Обозначим эти вероятности как p и q . Исход с вероятностью p будем называть “успехом”, а исход с вероятностью q – “неудачей”.

Очевидно, что

Пространство элементарных событий для каждого испытания состоит из двух точек. Пространство элементарных событий для n испытаний Бернулли содержит точек, каждая из которых представляет один возможный исход составного опыта. Поскольку испытания независимы, то вероятность последовательности событий равна произведению вероятностей соответствующих исходов. Например, вероятность последовательности событий

{У, У, Н, У, Н, Н, Н}

равна произведению

Примеры испытаний Бернулли.

1. Последовательные бросания “правильной” монеты. В этом случае p = q = 1/2 .

При бросании несимметричной монеты соответствующие вероятности изменят свои значения.

2. Каждый результат опыта можно рассматривать как A или .

3. Если существует несколько возможных исходов, то из них можно выделить группу исходов, которые рассматриваются как “успех”, называя все прочие исходы “неудачей”.

Например, при последовательных бросаниях игральной кости под “успехом” можно понимать выпадение 5, а под “неудачей” – выпадение любого другого числа очков. В этом случае p = 1/6, q = 5/6.

Если же под “успехом” понимать выпадение четного, а под “неудачей” – нечетного числа очков, то p = q = 1/2 .

4. Повторные случайные извлечения шара из урны, содержащей при каждом испытании a белых и b черных шаров. Если под успехом понимать извлечение белого шара, то , .

Феллер приводит следующий пример практического применения схемы испытаний Бернулли. Шайбы, изготовляемые при массовом производстве, могут отличаться по толщине, но при проверке они классифицируются на годные и дефектные – в зависимости от того, находится ли толщина в предписанных границах. И хотя продукция по многим причинам не может вполне соответствовать схеме Бернулли, эта схема задает идеальный стандарт для промышленного контроля качества продукции, несмотря даже на то, что этот стандарт никогда не достигается вполне точно. Машины подвержены изменениям, и поэтому вероятности не остаются одними и теми же; в режиме работы машин имеется некоторое постоянство, в результате чего длинные серии одинаковых отклонений оказываются более вероятными, чем это было бы при действительной независимости испытаний. Однако с точки зрения контроля качества продукции желательно, чтобы процесс соответствовал схеме Бернулли, и важно то, что в некоторых пределах этого можно добиться. Целью текущего контроля является обнаружение уже на ранней стадии существенных отступлений от идеальной схемы и использование их как указаний на угрожающее нарушение правильности работы машины.

Практические задачи, связанные с оценкой вероятности наступления события в результате нескольких равноценных попыток могут анализироваться с применением формулы Бернулли или (при большом количестве таких попыток) с применением приближенной формулы Пуассона. Для работы с этим материалом Вам снова потребуется знание ..

Схема Бернулли состоит в следующем: производится последовательность испытаний, в каждом из которых вероятность наступления определенного события А одна и та же и равна р. Испытания предполагаются независимыми (т.е. считается, что вероятность появления события А в каждом из испытаний не зависит от того, появилось или не появилось это событие в других испытаниях). Наступление события А обычно называют успехом, а ненаступление - неудачей. Обозначим вероятность неудачи q=1-P(A)=(1-p). Вероятность того, что в n независимых испытаниях успех наступит ровно m раз, выражается формулой Бернулли :

Вероятность Р n (m) при данном n сначала увеличивается при увеличении m от 0 до некоторого значения m 0 , а затем уменьшается при изменении m от m 0 до n.

Поэтому m 0 , называют наивероятнейшим числом наступлений успеха в опытах. Это число m 0 , заключено между числами np-q и np+p (или, что то же самое, между числами n(p+1)-1 и n(p+1) ) .Если число np-q - целое число, то наивероятнейших чисел два: np-q и np+p.

Важное замечание. Если np-q< 0, то наивероятнейшее число выигрышей равно нулю.

Пример. Игральная кость бросается 4 раза. При каждом броске нас интересует событие А ={выпала шестерка}.

Решение: Здесь четыре испытания, и т.к. кубик симметричен, то

p=P(A)=1/6, q=1-p=5/6.

Вероятность того, что в 4 независимых испытаниях успех наступит ровно m раз (m < 4), выражается формулой Бернулли:


Посчитаем эти значения и запишем их в таблицу.

Самое вероятное число успехов в нашем случае m 0 =0.

Пример. Вероятность появления успеха равна 3/5. Найти наивероятнейшее число наступлений успеха, если число испытаний равно 19, 20.

Решение: при n =19 находим


Таким образом, максимальная вероятность достигается для двух значений m 0 , равных 11 и 12. Эта вероятность равна P 19 (11)=P 19 (12)=0,1797. При n=20 максимальная вероятность достигается только для одного значения m 0 , т.к.

Не является целым числом. Наивероятнейшее число наступлений успеха m 0 равно 12. Вероятность его появления равна P 20 (12)=0,1797. Совпадение чисел P 20 (12) и P 19 (12) вызвано лишь сочетанием значений n и p и не имеет общего характера.

На практике в случае, когда n велико, а p мало (обычно p < 0,1; npq < 10) вместо формулы Бернулли применяют приближенную формулу Пуассона


Пример 4. Радиоаппаратура состоит из 1000 элементов. Вероятность отказа одного элемента в течение года равна 0,002. Какова вероятность отказа двух элементов за год? Какова вероятность отказа не менее двух элементов за год?

Решение: будем рассматривать работу каждого элемента как отдельное испытание. Обозначим А ={отказ элемента за год}.

P(A)=p=0,002, l=np=1000*0,002=2


П о формуле Пуассона


Обозначим через P 1000 (> 2) вероятность отказа не менее двух элементов за год.
Переходя к противоположному событию, вычислим P 1000 (> 2) как.



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме