Подпишись и читай
самые интересные
статьи первым!

Методы защиты от теплового излучения. Методы защиты от теплового излучения Защита от теплового излучения в производственных помещениях

Лабораторная работа №7

Оценка эффективности экранов для защиты от теплового излучения

Цель работы

Определение интенсивности теплового облучения на рабочем месте и оценка эффективности защитных экранов.

1. Измерить интенсивность теплового облучения на разных расстояниях от источника излучения:

а) при отсутствии защитных экранов;

б) при наличии защитного теплопоглощающего экрана - цепной завесы;

в) при наличии защитного теплоотводящего экрана - водяной завесы.

2. Измерить температуру источника излучения.

Тепловое излучение и защита от него

Процессы теплопередачи имеют широкое распространение в тепловой и атомной энергетике, ракетно-космической технике, металлургии, химической технологии, светотехнике, гелиотехнике и др.

Перенос теплоты от нагретых тел в окружающем пространстве осуществляется по законам теплопроводности, конвективного теплообмена и теплообмена излучением.

В отличие теплопроводности и конвекции, где плотность теплового потока зависит от температуры в первой степени, перенос энергии излучением определяется четвертой степенью абсолютной температуры. Вследствие этого при высоких температурах основным видом переноса теплоты является излучение.

При температурах 500°С около 60-90% всей теплоты, выделяемой производственным оборудованием и материалами, распространяется в окружающем пространстве путем излучения. При этом энергия излученияпроходит воздушную среду практически без потерь, снова превращаясь в тепловую энергию облучаемых тел.

Основополагающие законы теплового излучения были установлены физиками в конце 19 века и носят их имена.

Закон Стефана-Больцмана выражает зависимость плотности теплового излучения абсолютно черного тела от абсолютной температуры в четвертой степени



С = s Т 4 = С о (Т/100) 4 , (1)

где s, С о - постоянная и коэффициент излучения абсолютно черного тела (С о = 10 8 s = 5,67 [ Вт/м 2 К 4 ]). На практике приходится иметь дело с серыми телами, для них закон Стефана-Больцмана имеет вид:

Е i = e i e = С (Т/100) 4 , (2)

где e i =E i /e - степень черноты i-го тела (0 < e < 1),

С - коэффициент излучения серого тела [Вт/м 2 К 4 ].

3акон Планка устанавливает связь спектральной плотности теплового излучения абсолютно черного тела I o l [Вт/м 2 ], с длиной волны излучения [м] и абсолютной температурой тела:

I o l = C 1 l -5 / [ ехр (С 2 /lТ) - 1] . (3)

В этом выражении: C 1 =3,74×10 -18 [Вт/м 2 ] и С 2 =1,44×10 [м×К] - постоянные излучения.

Графически закон Планка представлен на рис.1.

В.Вин в 1893 году установил, что произведение абсолютной температуры тела на длину вечны максимальной энергии теплового излучения есть величина постоянная:

Тl MAX = 2,898 [м×К]. (4)

Это выражение получило название закона смещения Вина: с ростом температуры максимум спектральной плот-ности потока излучения смещается в коротковолновую область.

Расчет теплообмена излучением между двумя телами является сложной задачей. В общем случае поток энергии между телами определяется температурами тел, их формами, размерами и состоянием поверхностей, взаимным расположением в пространстве и расстоянием между ними. Аналитически эту зависимость можно представить в виде:

Q 1,2 = e пр С S 1 [(T 1 /100) 4 - (Т 2 /100) 4 ] j 1,2 , (5)

где e пр =[ l/e 1 + (S 1 /S 2) (1/e 2 -1)] - приведенная степень черноты двух тел;

S 1 , S 2 - площади поверхностей теплоизлучающего и теплопринимающего тел [м 2 ];

j 1,2 = Q 2 /Q 1 - коэффициент облученности, показывающий какая доля энергии излучения первого тела (Q 1) попадает на второе тело (Q 2). Коэффициент облученности можно рассчитать по законам геометрической оптики или взять из справочной литературы.

При длительном пребывании человека в зоне лучистого потока теплоты происходит нарушение теплового баланса в его организме, что может вызвать заболевание, называемое тепловой гипотермией (перегревом). В нормальных условиях в организме человека поддерживаются стабильные и постоянные условия для функционирования биологических клеток. Это явление называется гомеостазом. Одним из механизмов гомеостаза является система поддержания постоянства внутренней температуры тела человека. Если гомеостатическая система поддержания постоянства температуры организма не справляется с рассеянием избыточного поступающего тепла наступает гипотермия. При этом нарушаются и другие защитные гомеостатические функции организма. Поэтому это заболевание характеризуется не только повышением температуры тела, но и обильным потоотделением, значительным учащением пульса и дыхания, резкой слабостью, головокружением, изменением зрительных ощущений, шумом в ушах и, зачастую, потерей сознания.

Гомеостатические системы поддержания стабильности жизнедеятельности организма связаны между собой и помогают друг другу преодолевать отрицательные внешние воздействия иногда заменяя вышедшие из строя. Поэтому даже при уровнях теплового излучения, не вызывающих гипотермию наблюдается ослабление внимания, замедление реакций, ухудшение координации движений, что в свою очередь приводит к снижению производительности труда.

Тепловой эффект воздействия облучения зависит от многих факторов. Интенсивность облучения менее 700 Вт/м не вызывает у человека неприятного ощущения, если действует несколько минут; свыше 3500 Вт/м - уже через 2 с вызывает жжение, а через 5 с возможен тепловой удар. Производственные источники по характеру спектрального излученияусловно можно разделить на четыре группы:

1) с температурой излучающей поверхности до 500 °С (паропроводы, сушильные установки, низкотемпературные аппараты, наружная поверхность различных печей и др.); их спектр содержит длинные инфракрасные лучи (длина волны 3,7 - 9, 3 мкм);

2) с температурой поверхности от 500 до 1300 °С (открытое пламя, открытые проемы нагревательных печей и топок, нагретый металл - слитки, заготовки, расплавленные чугун и бронза и др.); их спектр содержит преимущественно инфракрасные лучи (1,9-3,7 мкм), но появляются и видимые лучи;

3) с температурой 1300-1800 °С (открытые проемы плавильных печей, расплавленная сталь и др.); их спектр содержит как инфракрасные лучи вплоть до коротких (1,2-1,9 мкм), так и видимые большой яркости;

4) с температурой выше 1800 °С (пламя электродуговых печей, сварочных аппаратов и др.) их спектр излучения содержит наряду с инфракрасными (0,8-1,2 мкм) и видимыми (0,4-0,8 мкм) также и ультрафиолетовые лучи.

Существуют следующие способы защиты от вредного воздействия теплового излучения: тепловая изоляция нагретых поверхностей, экранирование источников теплового излучения, применение воздушного душирования, удаление от источника теплового излучения (дистанционное управление), сокращение времени пребывания в зоне воздействия теплового излучения, использование средств индивидуальной защиты (защитные очки, маски, одежда).

Наиболее распространенным и эффективным способом защиты от теплового излучения является экранирование - создание определенного термического сопротивления на пути теплового потока в виде экранов различных конструкций (жестких глухих, сетчатых, полупрозрачных водяных, воздушно-водяных и др.). Различают теплоотражающие, теплопоглощающие и теплоотводящие экраны. В свою очередь, по степени прозрачности они делятся на три класса: непрозрачные, полупрозрачные и прозрачные. К теплоотражающим экранам относятся жесткие глухие преграды, изготовленные из материалов с высокой степенью отражения такие, как алюминий листовой, белая жесть, альфоль (алюминиевая фольга), а также закаленные стекла с пленочным покрытием. В последнее время получила распространение вакуумно-многослойная изоляция, изготовленная из множества полированных металлических пластин с зазорами, из которых откачен воздух. Эти экраны отличает высокая эффективность (отражается до 58% излучения), малая масса, экономичность. Однако, эти экраны не выдерживают высоких механических нагрузок, эффективность их существенно снижается при отложении на них пыли, при окислении.

В настоящее время нашли широкое применение экраны, выполненные из металлической плотной сетки или из металлических мелких цепей, подвешенных против излучающего проема в один или несколько рядов. Хотя цепные экраны не могут защищать от излучения так хорошо, как глухие (цепные завесы снижают тепловой поток на 60-70%), их применение в ряде случаев оправдано, поскольку они позволяют наблюдать за ходом технологического процесса.

Теплоотводящие экраны (водяные и вододисперсные завесы) применяют в тех случаях, когда через экран необходимо вводить инструмент или заготовки. Коэффициент эффективности водяных завес в значительной степени зависит от спектрального состава излучения м толщины слоя и может достигать 80%. Экраны в виде водяной пленки, стекающей по стеклу более устойчивы по сравнению со свободными водяными завесами. Их эффективность порядка 90%.

В определении оптимальных условий защиты от теплового излучения важное значение имеет характер его спектрального состава, так как материал экрана должен поглотить или отразить лучи, несущие максимум энергии. Как видно из рис.2 для организации эффективной защиты от теплового излучения необходимо устранить в лучистом потоке по возможности наибольший диапазон длинноволнового излучения, которое хорошо поглощается поверхностью кожи человека.


Вода является активным поглотителем инфракрасных лучей. Наиболее сильное поглощение отмечается в зоне лучей с длиной волны l=1,5-6,0 мкм.

Слой воды толщиной 1мм полностью поглощает участок спектра с l= 3 мкм, а слой 10 мм - тепловой поток с длиной волны l= 1,5 мкм.

Таким образом, слой воды, применяемый в защитных экранах, должен иметь толщину порядка нескольких мм, при этом однако коротковолновое излучение высокотемпературных источников не будет поглощено, что проявляется, например, в видимости светового излучения: являющегося коротковолновой части теплового излучения. Поэтому тонкие водяные завесы эффективны в основном для экранирования излучений от низкотемпературных источников (до 800 °С).

Интенсивность теплового облучения Е [Вт/м 2 ], которому подвергается человек применительно к условиям данного лабораторного стенда, можно оценить по приближенной формуле:

Е 0 =0,91S[(T изл /100) 4 -(T обл /100) 4 ]/L 2 , (6)

где S - площадь излучающей поверхности, м 2 ;

Т изл - температура излучающей поверхности, К;

Т обл - температура облучаемой части тел, К (для приближенного расчета можно принять Т обл = 309 К, то есть =36 °С);

L - расстояние от источника излучения, м.

Формула (6) верна при условии L ³ .

Расчет интенсивности облучения при наличии водяной завесы построен на принципе ослабления лучистого потока при прохождении через мутную среду с определенным оптическим показателем.

Уравнение поглощения лучистой энергии какой-либо средой имеет вид

Е= E o exp(-dd), (7)

где Е, Е о - интенсивность теплового облучения в данной точке при наличии и отсутствие завесы соответственно, Вт/м 2 ;

d - опытный коэффициент ослабления потока излучений мутной средой, равный для водяной завесы 1,3 мм -1 ;

d - толщина завесы, мм (при работе принять = 1мм).

В плоско-параллельной системе тел и экранов легко получается формула для определения снижения интенсивности лучистого теплообмена. В этом случае между двумя телами со степенью черноты e= e 1 = e 2 за счет установки между ними экранов со степенью черноты e э #e теплообмен уменьшается:

Е экр / Е 1,2 = . (8)

Коэффициент эффективности защитного теплового экрана в общем случае можно рассчитать по формуле:

h = (Е о - Е э) / Е о, (9)

где Е о и Е э - соответственно интенсивность облучения в данной точке при отсутствии и наличии экрана, Вт/м 2 .

Тепловыми излучениями называется процесс, при котором лучистая энергия распространяется в форме инфракрасных лучей с длиной волны до 10 мм. Источниками тепловых излучений являются все нагретые тела.

В условиях производства источниками тепловых излучений могут быть наружные стенки котлов, горячих теплопроводов, машин, проводников электросетей, электрических машин и аппаратов, нагревательных приборов и др. Источниками инфракрасных лучей являются расплавленные и раскаленные металлы и другие вещества.

Выделение тепла в воздух помещения оценивают количеством его (ккал/ч, Дж/ч) на 1 м 3 строительного объема здания.

Лучистая тепловая энергия воздухом почти не поглощается, а передается от более нагретых тел к поверхности менее нагретых, повышая их температуру. Сам же воздух нагревается от нагретых тел путем конвекции.

Нормальной температурой воздуха в производственном помещении считается температура порядка 20° С. При этой температуре в организме человека наилучшим образом осуществляется терморегуляция, т.е. поддержание постоянной температуры тела на уровне около 37° С.

Относительная влажность воздуха определяется как отношение содержания водяных паров в 1 м 3 воздуха к их максимально возможному содержанию в процентах при определенной температуре. Влажность воздуха в значительной мере влияет на теплообмен организма человека, главным образом на отдачу тепла испарением.

Подвижность воздуха , определяется скоростью его движения, влияет на охлаждение человека при температуре воздуха до 35-36° С, т.е. более низкой, чем температура тела. В случае же более высокой температуры воздуха, например 40° С, при большей его подвижности вместо охлаждения происходит внешний подогрев тела, а для охлаждения его требуется, чтобы происходило испарение, следовательно, происходит потеря влаги организмом.

При значительном перегреве организма возникает опасное заболевание, характеризуемое нарушение работы сердечнососудистой системы. Такое внезапное заболевание, называется также тепловым ударом, в тяжелых случаях может быть смертельным. Поэтому санитарными нормами проектирования регламентированы параметры благоприятного микроклимата в производственных помещения. Так, например, наилучшим (комфортным) условиям для организма человека при неподвижном воздухе соответствует температура 25° С при влажности 60 %.

В зависимости от наличия в помещении источников тепла и опасности перегрева для поддержания нормального микроклимата применяется вентиляция или более совершенное средство –кондиционирование воздуха, т.е, подача в помещение очищенного от пли и примесей воздуха с определенными температурой и влажностью. Следует отметить, что вентиляция и кондиционирование воздуха не защищают организм от тепловых лучей, которые проходят через воздух почти беспрепятственно. Защита от лучистого тепла может осуществляться путем устранения источников тепловых лучей и при помощи защиты людей от их действия экранами из малотеплопроводных материалов (асбест, шифер). Индивидуальная защита осуществляется применением спецодежды и защитных средств (брезентовые или суконные костюмы, очки со светофильтрами, щитки из органического стекла и др.).

В горячих цехах важную роль играет снабжение рабочих питьевой подсоленной или газированной водой, что улучшает водный баланс организма.

Метеорологические условия на производстве характеризуются температурой воздушной среды, относительной влажностью, скоростью движения воздуха и атмосферным давлением, температурой поверхности (ограждающих конструкций, технологического оборудования), интенсивностью теплового излучения. Особое место занимает тепловое (инфракрасное) излучение, исходящее от нагретых материалов, поверхности оборудования. Все эти параметры оказывают большое влияние на здоровье человека и производительность труда.

Гигиенические требования к величинам температуры, относительной влажности и скорости движения воздуха устанавливаются в зависимости:

  • а) от категории работ , различающихся по уровню энергозатрат:
    • легкие физические работы – работы, производимые сидя и сопровождающиеся незначительным физическим напряжением;
    • физические работы средней тяжести – работы, связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения;
    • тяжелые физические работы – работы, связанные с постоянными передвижениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий;
  • б) сезона года. Здесь различают два периода – холодный и теплый. Холодный период года – это период со среднесуточной температурой наружного воздуха, равной +10 °С и ниже. Теплый период года – период со среднесуточной температурой наружного воздуха выше +10 °С.

Отнесение условий труда к тому или иному классу вредности и опасности по показателям микроклимата осуществляется в соответствии с Руководством Р 2.2.2006–05 "Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда". Условия труда оцениваются по разным показателям микроклимата в зависимости от конкретного рабочего места. Гигиеническими нормативами предусмотрено деление микроклимата на нагревающий и охлаждающий.

К нагревающему микроклимату относится такое сочетание параметров микроклимата (температура воздуха, скорость его движения, влажность, относительная влажность, тепловое излучение), при котором имеет место нарушение теплообмена человека с окружающей средой, выражающееся в накоплении тепла в организме и (или) увеличении доли потерь тепла испарением пота.

Охлаждающим микроклиматом является такое сочетание параметров микроклимата, при котором имеет место изменение теплообмена, приводящее к образованию общего или локального дефицита тепла в организме.

Класс условий труда при работе в производственных помещениях с охлаждающим микроклиматом (при отсутствии теплового излучения) определяется по нижней границе температуры воздуха. Класс условий труда при работах на открытой территории в холодный период года и в неотапливаемых помещениях определяется по нижней границе температуры воздуха.

На ряде производств высокая температура воздушной среды сочетается с повышенной влажностью (красильные цеха текстильной промышленности, бумажная промышленность и т.д.). На других производствах технология требует пониженных температур (морозильники, бродильные отделения пивоваренных заводов и т.д.). Часто работы проводятся на открытом воздухе в зимнее время (строительные работы, открытая добыча угля и полезных ископаемых и т.д.).

Теплообмен в производственных помещениях горячих цехов происходит излучением и конвекцией. В процессе теплообмена различают две стадии: между источниками теплоты (с температурой более 33 °С) и окружающими предметами – эта стадия отличается высокой интенсивностью лучистого обмена и сравнительно малой интенсивностью конвективного; между нагретыми облучением телами и воздухом – в этой стадии преобладает конвекция. При температуре источников тепловыделений более 50 °С в теплообмене преобладает излучение, поэтому для обеспечения нормальных условий труда в горячих цехах снижение теплоизлучений является основной задачей.

Каждый источник теплоты создает в пространстве поле излучения , независимое от взаимного положения источников. Распространяясь в пространстве, поля излучений накладываются одно на другое, создавая некоторую картину терморадиационной напряженности цеха. Таким образом, пространство горячего цеха представляет собой поле распределения энергии излучения. Лучистая энергия не поглощается окружающим воздухом: в поверхностных слоях облучаемого тела она превращается в тепловую энергию. Передача теплоты излучением происходит в инфракрасном (ИК), видимом (В) и ультрафиолетовом (УФ) диапазонах спектра распространения электромагнитных волн и зависит в первую очередь от температуры источника.

Тепловой обмен человеческого организма с окружающей средой заключается во взаимосвязи между образованием тепла в результате жизнедеятельности организма и отдачей или получением им тепла из внешней среды.

У работающих при повышенных температурах нарушается обмен веществ, начинается обильное потоотделение. С потом выделяется до 50 г NaCl, вода при этом теряется в количестве до 8 литров в смену. В результате нарушается водно-солевой обмен, что ведет к изменениям в белковом обмене: в крови появляется большое количество молочной кислоты, мочевины. Вместе с потом удаляются необходимые витамины, тем самым нарушается витаминный обмен. Нарушается деятельность сердечно-сосудистой и дыхательной систем: пульс учащается до 100 ударов в минуту, повышается максимальное и понижается минимальное кровяное давление, учащается дыхание.

При охлаждении организма кровеносные сосуды кожи сокращаются, скорость протекания крови через кожу и отдача тепла путем конвекции и излучения замедляется. Охлаждение вызывает нарушение углеводного обмена, рефлекторной деятельности, появляются простудные заболевания, понижается производительность труда.

В производственных условиях важное значение приобретают изменения в организме, вызванные повторяющимися изо дня в день в течение длительного периода охлаждением или нагреванием. У работающих постепенно образуется новый функциональный уровень организма, часто наступает физиологическое приспособление к производственным термическим воздействиям. Возникает адаптация организма к этим условиям.

Нормирование метеорологических условий производственных помещений осуществляется по ГОСТ 12.1.005– 88 "Общие санитарно-гигиенические требования к воздуху рабочей зоны". Этот стандарт устанавливает оптимальные и допустимые микроклиматические условия в зависимости от характера производственных помещений, времени года и категории выполняемой работы (легкая, средней тяжести и тяжелая).

Для снижения опасности воздействия тепловых излучений используют такие способы, как уменьшение интенсивности излучения источника, защитное экранирование источника или рабочего места, воздушное душирование, применение средств индивидуальной защиты, организационные и лечебно-профилактические мероприятия.

При невозможности по техническим причинам достигнуть нормируемых температур вблизи источников значительных тепловых излучений предусматривается защита работающих от возможного перегрева: водовоздушное ду- ширование, высокодисперсное распыление воды на облучаемые поверхности и кабины, устройство помещений для отдыха и др. Правильная организация отдыха имеет большое значение для восстановления работоспособности. Длительность перерывов и их частота определяются с учетом интенсивности облучения и тяжести работы. В местах отдыха недалеко от места работы обеспечиваются благоприятные метеорологические условия. Регулярно организуются медосмотры для своевременного лечения.

Технические меры защиты от тепловых излучений: механизация, автоматизация, дистанционное управление и наблюдение, уменьшение тепловых потерь излучением, тепловая изоляция и герметичность источников излучения (печей, трубопроводов с горячими газами и жидкостями), экранирование источников излучения и рабочих мест.

Тепловая изоляция поверхностей источников излучения снижает температуру излучающей поверхности и уменьшает как общее тепловыделение, так и радиационную его часть. Уменьшая тепловые потери оборудования, тепловая изоляция обусловливает сокращение расхода топлива (электроэнергии). Печи изолируют в большинстве случаев легковесным кирпичом; между наружным стальным кожухом и кирпичной кладкой иногда применяют засыпки из сыпучих или волокнистых материалов; своды изолируют засыпкой из сыпучих материалов (например, песка или колошниковой пыли). Засыпка создает герметичность, что особенно важно для газовых выбросов.

Экранирование – наиболее распространенный и эффективный способ защиты от теплового излучения. Экраны применяются для локализации источников лучистой теплоты, снижения облученности на рабочих местах, снижения температур окружающих рабочее место поверхностей. По принципу действия экраны подразделяются на теплоотражающие, теплопоглощающие, теплоотводящие. Подобное деление в известной степени условно, так как каждый экран обладает способностью отражать, поглощать и отводить теплоту. Отнесение экрана к той или иной группе зависит от того, какая из его способностей наиболее выражена. По конструкции и возможности наблюдения за технологическим процессом экраны можно разделить на три группы:

непрозрачные . Материалом для теплоотражающих экранов служат листовой алюминий, белая жесть, алюминиевая фольга, укрепляемые на несущем материале (картоне, асбесте, сетке). Достоинства отражающих экранов – высокая эффективность, малая масса, экономичность; недостатки – нестойкость к высоким температурам, механическим воздействиям, ухудшающаяся эффективность при пылеотложениях и окислении.

В теплопоглащающих экранах применяют материалы с большим термическим сопротивлением (щиты асбестовые на металлической сетке или листе, футерованные огнеупорным или теплоизоляционным кирпичом и др.), вследствие чего температура наружной поверхности резко уменьшается. Такие экраны можно использовать при высоких интенсивностях излучений и температурах, механических ударах и запыленной среде.

Теплоотводящие экраны представляют собой сварные или литые конструкции, охлаждаемые протекающей внутри водой. Подобные экраны практически теплонепроницаемы. Они наиболее эффективны по сравнению с другими видами непрозрачных экранов, но к их устройству предъявляются определенные требования безопасности;

  • полупрозрачные . К теплопоглощающим экранам относятся металлические сетки (размер ячейки 3–3,5 мм), цепные завесы, армированное стальной сеткой стекло. Эти экраны уступают по эффективности непрозрачным экранам;
  • прозрачные . Для теплопоглащающих экранов используют разные стекла (силикатные, органические, кварцевые), бесцветные или окрашенные в массе, тонкие металлические пленки, осажденные на стекле.

Дистанционные пульты управления (или кабины), предназначенные для защиты от теплового излучения, должны удовлетворять следующим требованиям: объем кабины оператора – более 3 м3; стены, пол и потолок оборудованы теплозащитными ограждениями; площадь остекления достаточная для наблюдения за технологическим процессом и минимальная для уменьшения поступления теплоты.

Средства индивидуальной защиты от теплового излучения предназначены для защиты глаз, лица и поверхности тела. Для защиты глаз и лица используют очки со светофильтрами и щитки, голову от перегрева защищают каской, иногда – широкополой войлочной или фетровой шляпой. Остальную часть тела защищают спецодеждой из трудно- воспламеняемых и воздухопроницаемых материалов – сукна, брезента или льняных тканей и спецобувью. В горячих цехах для поддержания водного баланса в организме обеспечивают питьевой режим.

Защита человека от избыточного теплового излучения осу­ществляется по следующим направлениям: теплоизоляция нагретых поверхностей, экранирование теплового излучения, использование воздушного дублирования, использование защитной одежды.

Теплоизоляция позволяет не только уменьшить величинуинтенсивности излучения на рабочем месте, но и уменьшить тепловыделения в рабочую зону, а также исключить возможность ожо­гов при прикосновении к нагретым поверхностям.

Согласно санитарным нормам (СН 245-71), температура по­верхностей машин, механизмов и прочего производственного оборудования, с которым возможен контакт рабочего, должка иметь температуру не выше +45°С.

Наиболее распространенным и эффективным способом защиты от излучения является экранирование. Экраны применяюткак для экранирования источников, так и дня зашиты рабочего места. По принципу действия экраны подразделяются на теплоотражающие, теплопоглощающие и теплоотводящие.

В качестве материалов для теплоотражающих экранов исполь­зуются листовой алюминий, белая жесть, алъфоль (алюминиевая фольга) и другие материалы, имеющие хорошие отражательные способности.

Материалом для теплопоглощающих экранов служат вещества с достаточно высоким термическимсопротивлением -асбест, огнеупорный кирпич, минеральная вата и т. д. К теплопоглощающим относятся также экраны в виде цепных звеньев. Такой экран ус­тупает по эффективности сплошным и поэтому используется,какправило, при интенсивности излучения до 1160 Вт/м 2 , но остав­ляет открытым доступ в рабочее пространство печи.

Теплоотводящие экраны представляют собой различные кон­струкции, охлаждаемые, как правило, водой. Используются при любых интенсивностях излучений. Наиболее простым по съеме и распространенными в практике являются экраны в виде водяной завесы, встраиваемой у рабочих окон печей.

При относительно небольших интенсивностях излучений (до 2320 Вт/м 2) с целью сохранения теплового баланса в организме человекаи, как следствие его полной трудоспособности, исполь­зуется воздушное душирование или обдувание на рабочем месте от переданных или стационарных вентиляционных установок.

Скорости подаваемого потока воздуха в зависимости от ка­тегории работы, времени года, температуры воздуха и величины интенсивности излучения (при нормальной относительной влажности = 40-60 % и барометрическом давлении 1013 гПА приве­дены в СН 245-71).

Результаты экспериментальных

Исследований

Экранирование цепями Водяная завеса Стекло
Без экрана 1 экран 2 экрана 3 экрана Без завесы С завесой
Кал/см 2 мин 0,8 0,6 0,5 0,4 0,8 0,4 0.2
Вт/м 2
Эффективность экранирования, % 37,5
Допустимое время облучения Переносимо в течении раб дня и более Переносимо в течении раб дня и более Порог чувствительности
Длина волны излучения с max энергии l MAX = 3,25 мкм
Температура источника в 0 С Т = 893,46
Допустимое значение облученности в Вт/м 2 [Е Р.М. ] = 330

По результатам исследований можно судить о необходимости экранирования теплового излучения при действии его на человека, условно находящего в лаборатории в 30 см от источника. Как видно, без экрана тепловое излучение будет выше допустимого значения, что неблагоприятно сказывается как на здоровье самого рабочего, так и на его труде. Допустимое значение облученности удовлетворяется и при экране из трёх цепей, а также при экране из сплошного стекла. Также можно сделать вывод, что для экранирования теплового излучения целесообразней применять экран из стекла.

Тепловым излучением называется процесс, при котором теплота излучения распространяется в основном в форме инфракрасного излучения с длиной волны около 10 мм. Источниками тепловых излучений являются все тела, нагретые до температуры выше температуры окружающей среды.

Теплота излучения воздухом почти не поглощается, она передается от более нагретых тел к телам с меньшей температурой, вызывая их нагревание. Окружающий воздух нагревается не тепловым излучением, а конвекцией, т. е. при соприкосновении с поверхностями нагретых тел.

В результате поглощения телом человека падающей энергии (от печей, раскаленных слитков) повышается температура кожи и глубже лежащих слоев на облучаемом участке. Под влиянием облучения в организме происходят биохимические сдвиги, наступает нарушение сердечно-сосудистой и нервной системы, могут возникнуть заболевания глаз (катаракта) , т.к. излучение наиболее неблагоприятно для органов с плохим кровообращением (хрусталик глаза).

Температура нагретых поверхностей производственного оборудования и ограждений на рабочих местах (печей, ванн и др.) не должна превышать 45°С, а для оборудования, внутри которого температура равна или ниже 100 °С, температура на поверхности не должна превышать 35 °С.

Допустимая величина интенсивности излучения составляет от 35 до 140 Вт/м 2 (ГОСТ 12.1.005-88) - такое тепловое излучение переносится человеком неограниченно долго.

Для сравнения: примеры интенсивности тепловых излучений:

1) солнечный полдень - 700-800 Вт/м 2 ;

2) заливка стали в формы - 12000 Вт/м 2 .

Средства защиты:

1. Теплоизоляция (войлок, минеральная вата). Толщина теплоизоляции должна быть такой, чтобы температура снаружи ее была не более 45˚ С (СН 245-71).

Теплоизоляция - это элементы конструкции, уменьшающие передачу тепла. Также термин может означать материалы для выполнения таких элементов или комплекс мероприятий по их устройству.

Теплоизоляцию можно разделить по следующим типам, соответствующим разным способам теплопередачи:

Отражающая, которая предотвращает потери за счёт инфракрасного "теплового" излучения;

Теплоизоляция, предотвращающая потери за счёт теплопроводности.

Теплоизоляция применяется для замедления нагрева или охлаждения всюду, где необходимо поддерживать заданную температуру,

Для изготовления теплоизоляции, препятствующей теплопроводности, используют материалы, имеющие очень низкий коэффициент теплопроводности, - теплоизоляторы (материалы из стекловолокна, вспененный полиэтилен высокого давления). Теплоизоляторы отличаются неоднородной структурой и высокой пористостью. В случаях, когда теплоизоляция применяется для удержания тепла внутри изолируемого объекта, такие материалы могут называться утеплителями.

2 Экранирование тепловых излучений (кварцевое стекло, металлическая сетка, цепные завесы, водяные завесы).

Для защиты от инфракрасного излучения применяются следующие экраны: непрозрачные, полупрозрачные и прозрачные.

Непрозрачные экраны могут быть теплоотражающими, теплопоглощающими и теплоотводящими. Однако это деление достаточно условно, так как каждый экран обладает одновременно способностью отражать, поглощать и отводить тепло. Отнесение экрана к той или иной группе производится в зависимости от того, какая его способность выражена сильнее.

Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов широко используют альфоль, листовой алюминий, оцинкованную сталь, алюминиевую краску.

Теплопоглощающими называют экраны, выполненные из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, шлаковату.

В качестве теплоотводящих экранов наиболее широко используются водяные завесы, свободно падающие в виде пленки, орошающие другую экранирующую поверхность (например, металлическую), либо заключенные в специальный кожух из стекла (акварильные экраны), металла (змеевики) и др.

Полупрозрачные экраны изготовляют из металлической сетки, цепей, армированного стальной сеткой стекла и применяются: сетки - при интенсивности излучения 350 - 1000 Вт/м 2 , цепные завесы и армированное стекло - 700 - 5000 Вт/м 2 . Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов.

Прозрачные экраны могут быть теплопоглощающими и теплоотводящими. Теплопоглощающие экраны изготовляют из силикатных, кварцевых и органических стекол, бесцветных, окрашенных или металлизированных тонкими пленками.



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме