Подпишись и читай
самые интересные
статьи первым!

Основные методы решения логарифмических уравнений. Основные теоремы о логарифмах

Сегодня мы научимся решать самые простые логарифмические уравнения, где не требуются предварительные преобразования и отбор корней. Но если научиться решать такие уравнения, дальше будет намного проще.

Простейшее логарифмическое уравнение — это уравнение вида log a f (x ) = b , где a , b — числа (a > 0, a ≠ 1), f (x ) — некоторая функция.

Отличительная особенность всех логарифмических уравнений — наличие переменной x под знаком логарифма. Если изначально в задаче дано именно такое уравнение, оно называется простейшим. Любые другие логарифмические уравнения сводятся к простейшим путем специальных преобразований (см. «Основные свойства логарифмов »). Однако при этом надо учитывать многочисленные тонкости: могут возникнуть лишние корни, поэтому сложные логарифмические уравнения будут рассмотрены отдельно.

Как решать такие уравнения? Достаточно заменить число, стоящее справа от знака равенства, логарифмом по тому же основанию, что и слева. Затем можно избавиться от знака логарифма. Получим:

log a f (x ) = b ⇒ log a f (x ) = log a a b ⇒ f (x ) = a b

Получили обычное уравнение. Его корни являются корнями исходного уравнения.

Вынесение степеней

Зачастую логарифмические уравнения, которые внешне выглядят сложно и угрожающе, решаются буквально в пару строчек без привлечения сложных формул. Сегодня мы рассмотрим именно такие задачи, где все, что от вас потребуется — аккуратно свести формулу к канонической форме и не растеряться при поиске области определения логарифмов.

Сегодня, как вы уже наверняка догадались из названия, мы будем решать логарифмические уравнения по формулам перехода к канонической форме. Основной «фишкой» данного видеоурока будет работа со степенями, а точнее, вынесение степени из основания и аргумента. Давайте рассмотрим правило:

Аналогичным образом можно вынести степень и из основания:

Как видим, если при вынесении степени из аргумента логарифма у нас просто появляется дополнительный множитель спереди, то при вынесении степени из основания — не просто множитель, а перевернутый множитель. Это нужно помнить.

Наконец, самое интересное. Данные формулы можно объединить, тогда мы получим:

Разумеется, при выполнении данных переходов существуют определенные подводные камни, связанные с возможным расширением области определения или, наоборот, сужением области определения. Судите сами:

log 3 x 2 = 2 ∙ log 3 x

Если в первом случае в качестве x могло стоять любое число, отличное от 0, т. е. требование x ≠ 0, то во втором случае нас устроят лишь x , которые не только не равны, а строго больше 0, потому что область определения логарифма состоит в том, чтобы аргумент был строго больше 0. Поэтому напомню вам замечательную формулу из курса алгебры 8—9 класса:

То есть, мы должны записать нашу формулу следующим образом:

log 3 x 2 = 2 ∙ log 3 |x |

Тогда никакого сужения области определения не произойдет.

Однако в сегодняшнем видеоуроке никаких квадратов не будет. Если вы посмотрите на наши задачи, то увидите только корни. Следовательно, применять данное правило мы не будем, однако его все равно необходимо держать в голове, чтобы в нужный момент, когда вы увидите квадратичную функцию в аргументе или основании логарифма, вы вспомните это правило и все преобразования выполните верно.

Итак, первое уравнение:

Для решения такой задачи предлагаю внимательно посмотреть на каждое из слагаемых, присутствующих в формуле.

Давайте перепишем первое слагаемое в виде степени с рациональным показателем:

Смотрим на второе слагаемое: log 3 (1 − x ). Здесь делать ничего не нужно, здесь все уже преобразовании.

Наконец, 0, 5. Как я уже говорил в предыдущих уроках, при решении логарифмических уравнений и формул очень рекомендую переходить от десятичных дробей к обычным. Давайте так и сделаем:

0,5 = 5/10 = 1/2

Перепишем наше исходную формулу с учетом полученных слагаемых:

log 3 (1 − x ) = 1

Теперь переходим к канонической форме:

log 3 (1 − x ) = log 3 3

Избавляемся от знака логарифма, приравнивая аргументы:

1 − x = 3

−x = 2

x = −2

Все, мы решили уравнение. Однако давайте все-таки подстрахуемся и найдем область определения. Для этого вернемся к исходной формуле и посмотрим:

1 − x > 0

−x > −1

x < 1

Наш корень x = −2 удовлетворяет это требование, следовательно, x = −2 является решением исходного уравнения. Вот теперь мы получили строгое четкое обоснование. Все, задача решена.

Переходим ко второй задаче:

Давайте разбираться с каждым слагаемым отдельно.

Выписываем первое:

Первое слагаемое мы преобразовали. Работаем со вторым слагаемым:

Наконец, последнее слагаемое, которое стоит справа от знака равенства:

Подставляем полученные выражения вместо слагаемых в полученной формуле:

log 3 x = 1

Переходим к канонической форме:

log 3 x = log 3 3

Избавляемся от знака логарифма, приравнивая аргументы, и получаем:

x = 3

Опять же, давайте на всякий случай подстрахуемся, вернемся к исходному уравнению и посмотрим. В исходной формуле переменная x присутствует только в аргументе, следовательно,

x > 0

Во втором логарифме x стоит под корнем, но опять же в аргументе, следовательно, корень должен быть больше 0, т. е. подкоренное выражение должно быть больше 0. Смотрим на наш корень x = 3. Очевидно, что он удовлетворяет это требование. Следовательно, x = 3 является решением исходного логарифмического уравнения. Все, задача решена.

Ключевых моментов в сегодняшнем видеоуроке два:

1) не бойтесь преобразовывать логарифмы и, в частности, не бойтесь выносить степени за знак логарифма, при этом помните нашу основную формулу: при вынесении степени из аргумента она выносится просто без изменений как множитель, а при вынесении степени из основания эта степень переворачивается.

2) второй момент связан с само канонической формой. Переход к канонической форме мы выполняли в самом конце преобразования формулы логарифмического уравнения. Напомню следующую формулу:

a = log b b a

Разумеется, под выражением «любое число b », я подразумеваю такие числа, которые удовлетворяют требования, накладываемые на основание логарифма, т. е.

1 ≠ b > 0

Вот при таких b , а поскольку основание у нас уже известно, то это требование будет выполняться автоматически. Но при таких b — любых, которые удовлетворяют данное требование — данный переход может быть выполнен, и у нас получится каноническая форма, в которой можно избавиться от знака логарифма.

Расширение области определения и лишние корни

В процессе преобразования логарифмических уравнений может произойти неявное расширение области определения. Зачастую ученики этого даже не замечают, что приводит к ошибкам и неправильным ответам.

Начнем с простейших конструкций. Простейшим логарифмическим уравнением называется следующее:

log a f (x ) = b

Обратите внимание: x присутствует лишь в одном аргументе одного логарифма. Как мы решаем такие уравнения? Используем каноническую форму. Для этого представляем число b = log a a b , и наше уравнение перепишется в следующем виде:

log a f (x ) = log a a b

Данная запись называется канонической формой. Именно к ней следует сводить любое логарифмическое уравнение, которое вы встретите не только в сегодняшнем уроке, но и в любой самостоятельной и контрольной работе.

Как прийти к канонической форме, какие приемы использовать — это уже вопрос практики. Главное понимать: как только вы получите такую запись, можно считать, что задача решена. Потому что следующим шагом будет запись:

f (x ) = a b

Другими словами, мы избавляемся от знака логарифма и просто приравниваем аргументы.

К чему весь этот разговор? Дело в том, что каноническая форма применима не только к простейшим задачам, но и к любым другим. В частности и к тем, которые мы будем решать сегодня. Давайте посмотрим.

Первая задача:

В чем проблема данного уравнения? В том, что функция стоит сразу в двух логарифмах. Задачу можно свести к простейшей, просто вычтя один логарифм из другого. Но возникают проблемы с областью определения: могут появиться лишние корни. Поэтому давайте просто перенесем один из логарифмов вправо:

Вот такая запись уже гораздо больше похожа на каноническую форму. Но есть еще один нюанс: в канонической форме аргументы должны быть одинаковы. А у нас слева стоит логарифм по основанию 3, а справа — по основанию 1/3. Знаит, нужно привести эти основания к одному и тому же числу. Например, вспомним, что такое отрицательные степени:

А затем воспользуемся вынесем показатель «−1» за пределы log в качестве множителя:

Обратите внимание: степень, которая стояла в основании, переворачивается и превращается в дробь. Мы получили почти каноническую запись, избавившись от разных оснований, но взамен получили множитель «−1» справа. Давайте внесем этот множитель в аргумент, превратив его в степень:

Разумеется, получив каноническую форму, мы смело зачеркиваем знак логарифма и приравниваем аргументы. При этом напомню, что при возведении в степень «−1» дробь просто переворачивается — получается пропорция.

Воспользуемся основным свойством пропорции и перемножим ее крест-накрест:

(x − 4) (2x − 1) = (x − 5) (3x − 4)

2x 2 − x − 8x + 4 = 3x 2 − 4x − 15x + 20

2x 2 − 9x + 4 = 3x 2 − 19x + 20

x 2 − 10x + 16 = 0

Перед нами приведенное квадратное уравнение, поэтому решаем его с помощью формул Виета:

(x − 8)(x − 2) = 0

x 1 = 8; x 2 = 2

Вот и все. Думаете, уравнение решено? Нет! За такое решение мы получим 0 баллов, потому что в исходном уравнении присутствуют сразу два логарифма с переменной x . Поэтому требуется учесть область определения.

И здесь начинается самое веселое. Большинство учеников путаются: в чем состоит область определения логарифма? Разумеется, все аргументы (у нас их два) должны быть больше нуля:

(x − 4)/(3x − 4) > 0

(x − 5)/(2x − 1) > 0

Каждое из этих неравенств нужно решить, отметить на прямой, пересечь — и только потом посмотреть, какие корни лежат на пересечении.

Скажу честно: такой прием имеет право на существование, он надежный, и вы получите правильный ответ, однако в нем слишком много лишних действий. Поэтому давайте еще раз пройдемся по нашему решению и посмотрим: где именно требуется применить область определения? Другими словами, нужно четно понимать, когда именно возникают лишние корни.

  1. Изначально у нас было два логарифма. Потом мы перенесли один из них вправо, но на область определения это не повлияло.
  2. Затем мы выносим степень из основания, но логарифмов все равно остается два, и в каждом из них присутствует переменная x .
  3. Наконец, мы зачеркиваем знаки log и получаем классическое дробно-рациональное уравнение.

Именно на последнем шаге происходит расширение области определения! Как только мы перешли к дробно-рациональному уравнению, избавившись от знаков log, требования к переменной x резко поменялись!

Следовательно, область определения можно считать не в самом начале решения, а только на упомянутом шаге — перед непосредственным приравниваем аргументов.

Здесь-то и кроется возможность для оптимизации. С одной стороны, от нас требуется, чтобы оба аргумента были больше нуля. С другой — далее мы приравниваем эти аргументы. Следовательно, если хотя бы один и них будет положителен, то и второй тоже окажется положительным!

Вот и получается, что требовать выполнение сразу двух неравенств — это излишество. Достаточно рассмотреть лишь одну из этих дробей. Какую именно? Та, которая проще. Например, давайте разберемся с правой дробью:

(x − 5)/(2x − 1) > 0

Это типичное дробно-рациональное неравенство, решаем его методом интервалов:

Как расставить знаки? Возьмем число, заведомо большее всех наших корней. Например 1 млрд. И подставляем его дробь. Получим положительное число, т.е. справа от корня x = 5 будет стоять знак «плюс».

Затем знаки чередуются, потому что корней четной кратности нигде нет. Нас интересуют интервалы, где функция положительна. Следовательно, x ∈ (−∞; −1/2)∪(5; +∞).

Теперь вспоминаем про ответы: x = 8 и x = 2. Строго говоря, это еще не ответы, а лишь кандидаты на ответ. Какой из них принадлежит указанному множеству? Конечно, x = 8. А вот x = 2 нас не устраивает по области определения.

Итого ответом к первому логарифмическому уравнению будет x = 8. Вот теперь мы получили грамотное, обоснованное решение с учетом области определения.

Переходим ко второму уравнению:

log 5 (x − 9) = log 0,5 4 − log 5 (x − 5) + 3

Напоминаю, что если в уравнении присутствует десятичная дробь, то от нее следует избавиться. Другими словами, перепишем 0,5 в виде обычной дроби. Сразу замечаем, что логарифм, содержащий это основание, легко считается:

Это очень важны момент! Когда у нас и в основании, и в аргументе стоят степени, мы можем вынести показатели этих степеней по формуле:

Возвращаемся к нашему исходному логарифмическому уравнению и переписываем его:

log 5 (x − 9) = 1 − log 5 (x − 5)

Получили конструкцию, довольно близкую к канонической форме. Однако нас смущают слагаемые и знак «минус» справа от знака равенства. Давайте представим единицу как логарифм по основанию 5:

log 5 (x − 9) = log 5 5 1 − log 5 (x − 5)

Вычтем логарифмы справа (при этом их аргументы делятся):

log 5 (x − 9) = log 5 5/(x − 5)

Прекрасно. Вот мы и получили каноническую форму! Зачеркиваем знаки logи приравниваем аргументы:

(x − 9)/1 = 5/(x − 5)

Это пропорция, которая легко решается умножением крест-накрест:

(x − 9)(x − 5) = 5 1

x 2 − 9x − 5x + 45 = 5

x 2 − 14x + 40 = 0

Очевидно, перед нами приведенное квадратное уравнение. Оно легко решается с помощью формул Виета:

(x − 10)(x − 4) = 0

x 1 = 10

x 2 = 4

Мы получили два корня. Но это не окончательные ответы, а лишь кандидаты, потому что логарифмическое уравнение требует еще и проверки области определения.

Напоминаю: не надо искать, когда каждый из аргументов будет больше нуля. Достаточно потребовать, чтобы один аргумент — либо x − 9, либо 5/(x − 5) — был больше нуля. Рассмотрим первый аргумент:

x − 9 > 0

x > 9

Очевидно, что этому требованию удовлетворяет лишь x = 10. Это и есть окончательный ответ. Все задача решена.

Еще раз ключевые мысли сегодняшнего урока:

  1. Как только переменная x появляется в нескольких логарифмах, уравнение перестает быть элементарным, и для него придется считать область определения. Иначе можно запросто записать в ответ лишние корни.
  2. Работу с самой областью определения можно существенно упростить, если выписывать неравенство не сразу, а ровно в тот момент, когда мы избавляемся от знаков log. Ведь когда аргументы приравниваются друг к другу, достаточно потребовать, чтобы больше нуля был лишь один из них.

Разумеется, мы сами выбираем, из какого аргумента составлять неравенство, поэтому логично выбирать самый простой. Например, во втором уравнении мы выбрали аргумент (x − 9) —линейную функцию, в противовес дробно-рациональному второму аргументу. Согласитесь, решать неравенство x − 9 > 0 значительно проще, чем 5/(x − 5) > 0. Хотя результат получается один и тот же.

Данное замечание существенно упрощает поиск ОДЗ, но будьте внимательны: использовать одно неравенство вместо двух можно только том случае, когда аргументы именно приравниваются друг к другу !

Конечно, кто-то сейчас спросит: а что, бывает по-другому? Да, бывает. Например, в самом шаге, когда мы перемножаем два аргумента, содержащие переменную, заложена опасность возникновения лишних корней.

Судите сами: сначала требуется, чтобы каждый из аргументов был больше нуля, но после перемножения достаточно, чтобы их произведение было больше нуля. В результате упускается случай, когда каждая из этих дробей отрицательна.

Поэтому если вы только начинаете разбираться со сложными логарифмическими уравнениями, ни в коем случае не перемножайте логарифмы, содержащие переменную x — уж слишком часто это приведет к возникновению лишних корней. Лучше сделайте один лишний шаг, перенесите одно слагаемое в другую сторону составьте каноническую форму.

Ну, а как поступать в том случае, если без перемножения таких логарифмов не обойтись, мы обсудим в следующем видеоуроке.:)

Еще раз о степенях в уравнении

Сегодня мы разберем довольно скользкую тему, касающуюся логарифмических уравнений, а точнее — вынесение степеней из аргументов и оснований логарифмов.

Я бы даже сказал, речь пойдет о вынесении четных степеней, потому что именно с четными степенями возникает большинство затруднений и при решении реальных логарифмических уравнений.

Начнем с канонической формы. Допустим, у нас есть уравнение вида log a f (x ) = b . В этом случае мы переписываем число b по формуле b = log a a b . Получается следующее:

log a f (x ) = log a a b

Затем мы приравниваем аргументы:

f (x ) = a b

Канонической формой называется предпоследняя формула. Именно к ней стараются свести любое логарифмическое уравнение, каким бы сложным и страшным оно не казалось на первый взгляд.

Вот давайте и попробуем. Начнем с первой задачи:

Предварительное замечание: как я уже говорил, все десятичные дроби в логарифмическом уравнении лучше перевести ее в обычные:

0,5 = 5/10 = 1/2

Перепишем наше уравнение с учетом этого факта. Заметим, что и 1/1000, и 100 являются степенью десятки, а затем вынесем степени отовсюду, где они есть: из аргументов и даже из основания логарифмов:

И вот здесь у многих учеников возникает вопрос: «Откуда справа взялся модуль?» Действительно, почему бы не написать просто (х − 1)? Безусловно, сейчас мы напишем (х − 1), но право на такую запись нам дает учет области определения. Ведь в другом логарифме уже стоит (х − 1), и это выражение должно быть больше нуля.

Но когда мы выносим квадрат из основания логарифма, мы обязаны оставить в основании именно модуль. Поясню почему.

Дело в том, что с точки зрения математики вынесение степени равносильно извлечению корня. В частности, когда из выражения (x − 1) 2 выносится квадрат, мы по сути извлекаем корень второй степени. Но корень из квадрата — это не что иное как модуль. Именно модуль , потому что даже если выражение х − 1 будет отрицательным, при возведении в квадрат «минус» все равно сгорит. Дальнейшее извлечение корня даст нам положительное число — уже без всяких минусов.

В общем, чтобы не допускать обидных ошибок, запомните раз и навсегда:

Корень четной степени из любой функции, которая возведена в эту же степень, равен не самой функции, а ее модулю:

Возвращаемся к нашему логарифмическому уравнению. Говоря про модуль, я утверждал, что мы можем безболезненно снять его. Это правда. Сейчас объясню почему. Строго говоря, мы обязаны были рассмотреть два варианта:

  1. x − 1 > 0 ⇒ |х − 1| = х − 1
  2. x − 1 < 0 ⇒ |х − 1| = −х + 1

Каждый из этих вариантов нужно было бы решить. Но есть одна загвоздка: в исходной формуле уже присутствует функция (х − 1) без всякого модуля. И следуя области определения логарифмов, мы вправе сразу записать, что х − 1 > 0.

Это требование должно выполняться независимо от всяких модулей и других преобразований, которые мы выполняем в процессе решения. Следовательно, второй вариант рассматривать бессмысленно — он никогда не возникнет. Даже если при решении этой ветки неравенства мы получим какие-то числа, они все равно не войдут в окончательный ответ.

Теперь мы буквально в одном шаге от канонической формы логарифмического уравнения. Давайте представим единицу в следующем виде:

1 = log x − 1 (x − 1) 1

Кроме того, внесем множитель −4, стоящий справа, в аргумент:

log x − 1 10 −4 = log x − 1 (x − 1)

Перед нами каноническая форма логарифмического уравнения. Избавляемся от знака логарифма:

10 −4 = x − 1

Но поскольку в основании стояла функция (а не простое число), дополнительно потребуем, чтобы эта функция была больше нуля и не равна единице. Получится система:

Поскольку требование х − 1 > 0 выполняется автоматически (ведь х − 1 = 10 −4), одно из неравенств можно вычеркнуть из нашей системы. Второе условие также можно вычеркнуть, потому что х − 1 = 0,0001 < 1. Итого получаем:

х = 1 + 0,0001 = 1,0001

Это единственный корень, который автоматически удовлетворяет всем требованиям области определения логарифма (впрочем, все требования были отсеяны как заведомо выполненные в условиях нашей задачи).

Итак, второе уравнение:

3 log 3 x x = 2 log 9 x x 2

Чем это уравнение принципиально отличается от предыдущего? Уже хотя бы тем, что основания логарифмов — 3х и 9х — не являются натуральными степенями друг друга. Следовательно, переход, который мы использовали в предыдущем решении, невозможен.

Давайте хотя бы избавимся от степеней. В нашем случае единственная степень стоит во втором аргументе:

3 log 3 x x = 2 ∙ 2 log 9 x |x |

Впрочем, знак модуля можно убрать, ведь переменная х стоит еще и в основании, т.е. х > 0 ⇒ |х| = х. Перепишем наше логарифмическое уравнение:

3 log 3 x x = 4 log 9 x x

Получили логарифмы, в которых одинаковые аргументы, но разные основания. Как поступить дальше? Вариантов тут множество, но мы рассмотрим лишь два из них, которые наиболее логичны, а самое главное — это быстрые и понятные приемы для большинства учеников.

Первый вариант мы уже рассматривали: в любой непонятной ситуации переводите логарифмы с переменным основанием к какому-нибудь постоянному основанию. Например, к двойке. Формула перехода проста:

Разумеется, в роли переменной с должно выступать нормальное число: 1 ≠ c > 0. Пусть в нашем случае с = 2. Теперь перед нами обычное дробно-рациональное уравнение. Собираем все элементы слева:

Очевидно, что множитель log 2 x лучше вынести, поскольку он присутствует и в первой, и во второй дроби.

log 2 x = 0;

3 log 2 9х = 4 log 2 3x

Разбиваем каждый log на два слагаемых:

log 2 9х = log 2 9 + log 2 x = 2 log 2 3 + log 2 x;

log 2 3x = log 2 3 + log 2 x

Перепишем обе части равенства с учетом этих фактов:

3 (2 log 2 3 + log 2 x ) = 4 (log 2 3 + log 2 x )

6 log 2 3 + 3 log 2 x = 4 log 2 3 + 4 log 2 x

2 log 2 3 = log 2 x

Теперь осталось внести двойку под знак логарифма (она превратится в степень: 3 2 = 9):

log 2 9 = log 2 x

Перед нами классическая каноническая форма, избавляемся от знака логарифма и получаем:

Как и предполагалось, этот корень оказался больше нуля. Осталось проверить область определения. Посмотрим на основания:

Но корень x = 9 удовлетворяет этим требованиям. Следовательно, он является окончательным решением.

Вывод из данного решения просто: не пугайтесь длинных выкладок! Просто в самом начале мы выбрали новое основание наугад — и это существенно усложнило процесс.

Но тогда возникает вопрос: какое же основание является оптимальным ? Об этом я расскажу во втором способе.

Давайте вернемся к нашему исходному уравнению:

3 log 3x x = 2 log 9x x 2

3 log 3x x = 2 ∙ 2 log 9x |x |

х > 0 ⇒ |х| = х

3 log 3 x x = 4 log 9 x x

Теперь немного подумаем: какое число или функция будет оптимальным основанием? Очевидно, что лучшим вариантом будет с = х — то, что уже стоит в аргументах. В этом случае формула log a b = log c b /log c a примет вид:

Другими словами, выражение просто переворачивается. При этом аргумент и основание меняется местами.

Эта формула очень полезна и очень часто применяется при решении сложных логарифмических уравнений. Однако при использовании этой формулы возникает один очень серьезный подводный камень. Если вместо основания мы подставляем переменную х, то на нее накладываются ограничения, которых ранее не наблюдалось:

Такого ограничения в исходном уравнении не было. Поэтому следует отдельно проверить случай, когда х = 1. Подставим это значение в наше уравнение:

3 log 3 1 = 4 log 9 1

Получаем верное числовое равенство. Следовательно, х = 1 является корнем. Точно такой же корень мы нашли в предыдущем методе в самом начале решения.

А вот теперь, когда мы отдельно рассмотрели этот частный случай, смело полагаем, что х ≠ 1. Тогда наше логарифмическое уравнение перепишется в следующем виде:

3 log x 9x = 4 log x 3x

Раскладываем оба логарифма по той же формуле, что и раньше. При этом заметим, что log x x = 1:

3 (log x 9 + log x x ) = 4 (log x 3 + log x x )

3 log x 9 + 3 = 4 log x 3 + 4

3 log x 3 2 − 4 log x 3 = 4 − 3

2 log x 3 = 1

Вот мы и пришли к канонической форме:

log x 9 = log x x 1

x = 9

Получили второй корень. Он удовлетворяет требованию х ≠ 1. Следовательно, х = 9 наравне с х = 1 является окончательным ответом.

Как видим, объем выкладок немножко сократился. Но при решении реального логарифмического уравнения количество действий будет намного меньше еще и потому, что от вас не требуется столь подробно расписывать каждый шаг.

Ключевое правило сегодняшнего урока состоит в следующем: если в задаче присутствует четная степень, из которой извлекают корень такой же степени, то на выходе мы получи модуль. Однако этот модуль можно убрать, если обратить внимание на область определения логарифмов.

Но будьте внимательны: большинство учеников после этого урока считают, что им все понятно. Но при решении реальных задач они не могут воспроизвести всю логическую цепочку. В результате уравнение обрастает лишними корнями, а ответ получается неправильным.

Введение

Увеличение умственной нагрузки на уроках математики заставляет задуматься над тем как поддержать у студентов интерес к изучаемому материалу, их активность на протяжении всего урока. В связи с этим ведутся поиски новых эффективных методов обучения и таких методических приемов, которые активизировали бы мысль студентов, стимулировали бы их к самостоятельному приобретению знаний.

Возникновение интереса к математике у значительного числа студентов зависит в большей степени от методики ее преподавания, от того, на сколько умело будет построена учебная работа. Вовремя обращая внимание студентов на то, что математика изучает общие свойства объектов и явлений окружающего мира, имеет дело не с предметами, а с отвлеченными абстрактными понятиями, можно добиться понимания того, что математика не нарушает связи с действительностью, а, напротив, дает возможность изучить ее глубже, сделать обобщенные теоретические выводы, которые широко применяются в практике.

Участвуя в фестивале педагогических идей "Открытый урок" 2004-2005 учебного года, я представила урок-лекцию по теме "Логарифмическая функция" (диплом № 204044). Считаю этот метод наиболее удачным в данном конкретном случае. В результате изучения у студентов имеется подробный конспект и краткая схема по теме, что облегчит им подготовку к следующим урокам. В частности, по теме "Решение логарифмических уравнений", которая полностью опирается на изучение логарифмической функции и ее свойств.

При формировании основополагающих математических понятий важно создать у студентов представление о целесообразности введения каждого из них и возможности их применения. Для этого необходимо, чтобы при формулировке определения некоторого понятия, работе над его логической структурой, рассматривались вопросы об истории возникновения данного понятия. Такой подход поможет студентам осознать, что новое понятие служит обобщением фактов реальной действительности.

История возникновения логарифмов подробно представлена в работе прошлого года.

Учитывая важность преемственности при обучении математике в среднем специальном учебном заведении и в вузе и необходимость соблюдения единых требований к студентам считаю целесообразным следующую методику ознакомления студентов с решением логарифмических уравнений.

Уравнения, содержащие переменную под знаком логарифма (в частности, в основании логарифма), называются логарифмическими. Рассмотрим логарифмические уравнения вида:

Решение этих уравнений основано на следующей теореме.

Теорема 1. Уравнение равносильно системе

(2)

Для решения уравнения (1) достаточно решить уравнение

и его решения подставить в систему неравенств

задающую область определения уравнения (1).

Корнями уравнения (1) будут только те решения уравнения (3), которые удовлетворяют системе (4), т.е. принадлежат области определения уравнения (1).

При решения логарифмических уравнений может произойти расширение области определения (приобретение посторонних корней) или сужение (потеря корней). Поэтому подстановка корней уравнения (3) в систему (4), т.е. проверка решения, обязательна.

Пример 1: Решить уравнение

Решение:

Оба значения х удовлетворяют условиям системы.

Ответ:

Рассмотрим уравнения вида:

Их решение основано на следующей теореме

Теорема 2: Уравнение (5) равносильно системе

(6)

Корнями уравнения (5) будут только те корни уравнения , которые

принадлежат области определения, задаваемой условиями .

Логарифмическое уравнение вида (5) можно решить различными способами. Рассмотрим основные из них.

1. ПОТЕНЦИНИРОВАНИЕ (применение свойств логарифма).

Пример 2: Решить уравнение

Решение: В силу теоремы 2 данное уравнение равносильно системе:

Решим уравнение:

Всем условиям системы удовлетворяет лишь один корень. Ответ:

2. ИСПОЛЬЗОВАНИЕ ОПРЕДЕЛЕНИЯ ЛОГАРИФМА .

Пример 3: Найти х , если

Решение:

Значение х = 3 принадлежит области определения уравнения. Ответ х = 3

3. ПРИВЕДЕНИЕ К КВАДРАТНОМУ УРАВНЕНИЮ.

Пример 4: Решить уравнение

Оба значения х являются корнями уравнения.

Ответ:

4. ЛОГАРИФМИРОВАНИЕ.

Пример 5: Решить уравнение

Решение: Прологарифмируем обе части уравнения по основанию 10 и применим свойство "логарифм степени".

Оба корня принадлежат области допустимых значений логарифмической функции.

Ответ: х = 0,1; х = 100

5. ПРИВЕДЕНИЕ К ОДНОМУ ОСНОВАНИЮ.

Пример 6: Решить уравнение

Воспользуемся формулой и перейдем во всех слагаемых к логарифму по основанию 2:

Тогда данное уравнение примет вид:

Так как , то это корень уравнения.

Ответ: х = 16

основными свойствами .

  1. logax + logay = loga (x · y);
  2. logax − logay = loga (x: y).

одинаковые основания

Log6 4 + log6 9.

Теперь немного усложним задачу.

Примеры решения логарифмов

Что, если в основании или аргументе логарифма стоит степень? Тогда показатель этой степени можно вынести за знак логарифма по следующим правилам:

Разумеется, все эти правила имеют смысл при соблюдении ОДЗ логарифма: a > 0, a ≠ 1, x >

Задача. Найдите значение выражения:

Переход к новому основанию

Пусть дан логарифм logax. Тогда для любого числа c такого, что c > 0 и c ≠ 1, верно равенство:

Задача. Найдите значение выражения:

Смотрите также:


Основные свойства логарифма

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Экспонента равна 2,718281828…. Чтобы запомнить экспоненту можете изучить правило: экспонента равна 2,7 и два раза год рождения Льва Николаевича Толстого.

Основные свойства логарифмов

Зная это правило будете знать и точное значение экспоненты, и дату рождения Льва Толстого.


Примеры на логарифмы

Прологарифмировать выражения

Пример 1.
а). х=10ас^2 (а>0,с>0).

По свойствам 3,5 вычисляем

2.

3.

4. где .



Пример 2. Найти х, если


Пример 3. Пусть задано значение логарифмов

Вычислить log(x), если




Основные свойства логарифмов

Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать. Но поскольку логарифмы — это не совсем обычные числа, здесь есть свои правила, которые называются основными свойствами .

Эти правила обязательно надо знать — без них не решается ни одна серьезная логарифмическая задача. К тому же, их совсем немного — все можно выучить за один день. Итак, приступим.

Сложение и вычитание логарифмов

Рассмотрим два логарифма с одинаковыми основаниями: logax и logay. Тогда их можно складывать и вычитать, причем:

  1. logax + logay = loga (x · y);
  2. logax − logay = loga (x: y).

Итак, сумма логарифмов равна логарифму произведения, а разность — логарифму частного. Обратите внимание: ключевой момент здесь — одинаковые основания . Если основания разные, эти правила не работают!

Эти формулы помогут вычислить логарифмическое выражение даже тогда, когда отдельные его части не считаются (см. урок «Что такое логарифм»). Взгляните на примеры — и убедитесь:

Поскольку основания у логарифмов одинаковые, используем формулу суммы:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Задача. Найдите значение выражения: log2 48 − log2 3.

Основания одинаковые, используем формулу разности:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Задача. Найдите значение выражения: log3 135 − log3 5.

Снова основания одинаковые, поэтому имеем:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Как видите, исходные выражения составлены из «плохих» логарифмов, которые отдельно не считаются. Но после преобразований получаются вполне нормальные числа. На этом факте построены многие контрольные работы. Да что контрольные — подобные выражения на полном серьезе (иногда — практически без изменений) предлагаются на ЕГЭ.

Вынесение показателя степени из логарифма

Несложно заметить, что последнее правило следует их первых двух. Но лучше его все-таки помнить — в некоторых случаях это значительно сократит объем вычислений.

Разумеется, все эти правила имеют смысл при соблюдении ОДЗ логарифма: a > 0, a ≠ 1, x > 0. И еще: учитесь применять все формулы не только слева направо, но и наоборот, т.е. можно вносить числа, стоящие перед знаком логарифма, в сам логарифм. Именно это чаще всего и требуется.

Задача. Найдите значение выражения: log7 496.

Избавимся от степени в аргументе по первой формуле:
log7 496 = 6 · log7 49 = 6 · 2 = 12

Задача. Найдите значение выражения:

Заметим, что в знаменателе стоит логарифм, основание и аргумент которого являются точными степенями: 16 = 24; 49 = 72. Имеем:

Думаю, к последнему примеру требуются пояснения. Куда исчезли логарифмы? До самого последнего момента мы работаем только со знаменателем.

Формулы логарифмов. Логарифмы примеры решения.

Представили основание и аргумент стоящего там логарифма в виде степеней и вынесли показатели — получили «трехэтажную» дробь.

Теперь посмотрим на основную дробь. В числителе и знаменателе стоит одно и то же число: log2 7. Поскольку log2 7 ≠ 0, можем сократить дробь — в знаменателе останется 2/4. По правилам арифметики, четверку можно перенести в числитель, что и было сделано. В результате получился ответ: 2.

Переход к новому основанию

Говоря о правилах сложения и вычитания логарифмов, я специально подчеркивал, что они работают только при одинаковых основаниях. А что, если основания разные? Что, если они не являются точными степенями одного и того же числа?

На помощь приходят формулы перехода к новому основанию. Сформулируем их в виде теоремы:

Пусть дан логарифм logax. Тогда для любого числа c такого, что c > 0 и c ≠ 1, верно равенство:

В частности, если положить c = x, получим:

Из второй формулы следует, что можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе.

Эти формулы редко встречается в обычных числовых выражениях. Оценить, насколько они удобны, можно только при решении логарифмических уравнений и неравенств.

Впрочем, существуют задачи, которые вообще не решаются иначе как переходом к новому основанию. Рассмотрим парочку таких:

Задача. Найдите значение выражения: log5 16 · log2 25.

Заметим, что в аргументах обоих логарифмов стоят точные степени. Вынесем показатели: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

А теперь «перевернем» второй логарифм:

Поскольку от перестановки множителей произведение не меняется, мы спокойно перемножили четверку и двойку, а затем разобрались с логарифмами.

Задача. Найдите значение выражения: log9 100 · lg 3.

Основание и аргумент первого логарифма — точные степени. Запишем это и избавимся от показателей:

Теперь избавимся от десятичного логарифма, перейдя к новому основанию:

Основное логарифмическое тождество

Часто в процессе решения требуется представить число как логарифм по заданному основанию. В этом случае нам помогут формулы:

В первом случае число n становится показателем степени, стоящей в аргументе. Число n может быть абсолютно любым, ведь это просто значение логарифма.

Вторая формула — это фактически перефразированное определение. Она так и называется: .

В самом деле, что будет, если число b возвести в такую степень, что число b в этой степени дает число a? Правильно: получится это самое число a. Внимательно прочитайте этот абзац еще раз — многие на нем «зависают».

Подобно формулам перехода к новому основанию, основное логарифмическое тождество иногда бывает единственно возможным решением.

Задача. Найдите значение выражения:

Заметим, что log25 64 = log5 8 — просто вынесли квадрат из основания и аргумента логарифма. Учитывая правила умножения степеней с одинаковым основанием, получаем:

Если кто-то не в курсе, это была настоящая задача из ЕГЭ 🙂

Логарифмическая единица и логарифмический ноль

В заключение приведу два тождества, которые сложно назвать свойствами — скорее, это следствия из определения логарифма. Они постоянно встречаются в задачах и, что удивительно, создают проблемы даже для «продвинутых» учеников.

  1. logaa = 1 — это. Запомните раз и навсегда: логарифм по любому основанию a от самого этого основания равен единице.
  2. loga 1 = 0 — это. Основание a может быть каким угодно, но если в аргументе стоит единица — логарифм равен нулю! Потому что a0 = 1 — это прямое следствие из определения.

Вот и все свойства. Обязательно потренируйтесь применять их на практике! Скачайте шпаргалку в начале урока, распечатайте ее — и решайте задачи.

Смотрите также:

Логарифмом числа b по основанию a обозначают выражение . Вычислить логарифм значит найти такой степень x (),при котором выполняется равенство

Основные свойства логарифма

Приведенные свойства необходимо знать, поскольку, на их основе решаются практически все задачи и примеры связаны с логарифмами. Остальные экзотических свойств можно вывести путем математических манипуляций с данными формулами

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

При вычислениях формулы суммы и разности логарифмов (3,4) встречаются довольно часто. Остальные несколько сложные, но в ряде задач являются незаменимыми для упрощения сложных выражений и вычисления их значений.

Распространены случаи логарифмов

Одними из распространенных логарифмов такие в которых основание ровное десять, экспоненте или двойке.
Логарифм по основанию десять принято называть десятичным логарифмом и упрощенно обозначать lg(x).

Из записи видно, что основы в записи не пишут. Для примера

Натуральный логарифм – это логарифм у которого за основу экспонента (обозначают ln(x)).

Экспонента равна 2,718281828…. Чтобы запомнить экспоненту можете изучить правило: экспонента равна 2,7 и два раза год рождения Льва Николаевича Толстого. Зная это правило будете знать и точное значение экспоненты, и дату рождения Льва Толстого.

И еще один важный логарифм по основанию два обозначают

Производная от логарифм функции равна единице разделенной на переменную

Интеграл или первообразная логарифма определяется зависимостью

Приведенного материала Вам достаточно, чтобы решать широкий класс задач связанных с логарифмами и логарифмирования. Для усвоения материала приведу лишь несколько распространенных примеров из школьной программы и ВУЗов.

Примеры на логарифмы

Прологарифмировать выражения

Пример 1.
а). х=10ас^2 (а>0,с>0).

По свойствам 3,5 вычисляем

2.
По свойству разницы логарифмов имеем

3.
Используя свойства 3,5 находим

4. где .

На вид сложное выражение с использованием ряда правил упрощается к виду

Нахождение значений логарифмов

Пример 2. Найти х, если

Решение. Для вычисления применим до последнего слагаемого 5 и 13 свойства

Подставляем в запись и скорбим

Поскольку основания равные, то приравниваем выражения

Логарифмы. Начальный уровень.

Пусть задано значение логарифмов

Вычислить log(x), если

Решение: Прологарифмируем переменную, чтобы расписать логарифм через сумму слагаемых


На этом знакомство с логарифмами и их свойствами только начинается. Упражняйтесь в вычислениях, обогащайте практические навыки — полученные знания Вам скоро понадобятся для решения логарифмических уравнений. Изучив основные методы решения таких уравнений мы расширим Ваши знания для другой не менее важной теме — логарифмические неравенства …

Основные свойства логарифмов

Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать. Но поскольку логарифмы — это не совсем обычные числа, здесь есть свои правила, которые называются основными свойствами .

Эти правила обязательно надо знать — без них не решается ни одна серьезная логарифмическая задача. К тому же, их совсем немного — все можно выучить за один день. Итак, приступим.

Сложение и вычитание логарифмов

Рассмотрим два логарифма с одинаковыми основаниями: logax и logay. Тогда их можно складывать и вычитать, причем:

  1. logax + logay = loga (x · y);
  2. logax − logay = loga (x: y).

Итак, сумма логарифмов равна логарифму произведения, а разность — логарифму частного. Обратите внимание: ключевой момент здесь — одинаковые основания . Если основания разные, эти правила не работают!

Эти формулы помогут вычислить логарифмическое выражение даже тогда, когда отдельные его части не считаются (см. урок «Что такое логарифм»). Взгляните на примеры — и убедитесь:

Задача. Найдите значение выражения: log6 4 + log6 9.

Поскольку основания у логарифмов одинаковые, используем формулу суммы:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Задача. Найдите значение выражения: log2 48 − log2 3.

Основания одинаковые, используем формулу разности:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Задача. Найдите значение выражения: log3 135 − log3 5.

Снова основания одинаковые, поэтому имеем:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Как видите, исходные выражения составлены из «плохих» логарифмов, которые отдельно не считаются. Но после преобразований получаются вполне нормальные числа. На этом факте построены многие контрольные работы. Да что контрольные — подобные выражения на полном серьезе (иногда — практически без изменений) предлагаются на ЕГЭ.

Вынесение показателя степени из логарифма

Теперь немного усложним задачу. Что, если в основании или аргументе логарифма стоит степень? Тогда показатель этой степени можно вынести за знак логарифма по следующим правилам:

Несложно заметить, что последнее правило следует их первых двух. Но лучше его все-таки помнить — в некоторых случаях это значительно сократит объем вычислений.

Разумеется, все эти правила имеют смысл при соблюдении ОДЗ логарифма: a > 0, a ≠ 1, x > 0. И еще: учитесь применять все формулы не только слева направо, но и наоборот, т.е. можно вносить числа, стоящие перед знаком логарифма, в сам логарифм.

Как решать логарифмы

Именно это чаще всего и требуется.

Задача. Найдите значение выражения: log7 496.

Избавимся от степени в аргументе по первой формуле:
log7 496 = 6 · log7 49 = 6 · 2 = 12

Задача. Найдите значение выражения:

Заметим, что в знаменателе стоит логарифм, основание и аргумент которого являются точными степенями: 16 = 24; 49 = 72. Имеем:

Думаю, к последнему примеру требуются пояснения. Куда исчезли логарифмы? До самого последнего момента мы работаем только со знаменателем. Представили основание и аргумент стоящего там логарифма в виде степеней и вынесли показатели — получили «трехэтажную» дробь.

Теперь посмотрим на основную дробь. В числителе и знаменателе стоит одно и то же число: log2 7. Поскольку log2 7 ≠ 0, можем сократить дробь — в знаменателе останется 2/4. По правилам арифметики, четверку можно перенести в числитель, что и было сделано. В результате получился ответ: 2.

Переход к новому основанию

Говоря о правилах сложения и вычитания логарифмов, я специально подчеркивал, что они работают только при одинаковых основаниях. А что, если основания разные? Что, если они не являются точными степенями одного и того же числа?

На помощь приходят формулы перехода к новому основанию. Сформулируем их в виде теоремы:

Пусть дан логарифм logax. Тогда для любого числа c такого, что c > 0 и c ≠ 1, верно равенство:

В частности, если положить c = x, получим:

Из второй формулы следует, что можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе.

Эти формулы редко встречается в обычных числовых выражениях. Оценить, насколько они удобны, можно только при решении логарифмических уравнений и неравенств.

Впрочем, существуют задачи, которые вообще не решаются иначе как переходом к новому основанию. Рассмотрим парочку таких:

Задача. Найдите значение выражения: log5 16 · log2 25.

Заметим, что в аргументах обоих логарифмов стоят точные степени. Вынесем показатели: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

А теперь «перевернем» второй логарифм:

Поскольку от перестановки множителей произведение не меняется, мы спокойно перемножили четверку и двойку, а затем разобрались с логарифмами.

Задача. Найдите значение выражения: log9 100 · lg 3.

Основание и аргумент первого логарифма — точные степени. Запишем это и избавимся от показателей:

Теперь избавимся от десятичного логарифма, перейдя к новому основанию:

Основное логарифмическое тождество

Часто в процессе решения требуется представить число как логарифм по заданному основанию. В этом случае нам помогут формулы:

В первом случае число n становится показателем степени, стоящей в аргументе. Число n может быть абсолютно любым, ведь это просто значение логарифма.

Вторая формула — это фактически перефразированное определение. Она так и называется: .

В самом деле, что будет, если число b возвести в такую степень, что число b в этой степени дает число a? Правильно: получится это самое число a. Внимательно прочитайте этот абзац еще раз — многие на нем «зависают».

Подобно формулам перехода к новому основанию, основное логарифмическое тождество иногда бывает единственно возможным решением.

Задача. Найдите значение выражения:

Заметим, что log25 64 = log5 8 — просто вынесли квадрат из основания и аргумента логарифма. Учитывая правила умножения степеней с одинаковым основанием, получаем:

Если кто-то не в курсе, это была настоящая задача из ЕГЭ 🙂

Логарифмическая единица и логарифмический ноль

В заключение приведу два тождества, которые сложно назвать свойствами — скорее, это следствия из определения логарифма. Они постоянно встречаются в задачах и, что удивительно, создают проблемы даже для «продвинутых» учеников.

  1. logaa = 1 — это. Запомните раз и навсегда: логарифм по любому основанию a от самого этого основания равен единице.
  2. loga 1 = 0 — это. Основание a может быть каким угодно, но если в аргументе стоит единица — логарифм равен нулю! Потому что a0 = 1 — это прямое следствие из определения.

Вот и все свойства. Обязательно потренируйтесь применять их на практике! Скачайте шпаргалку в начале урока, распечатайте ее — и решайте задачи.

Логарифмические уравнения. Продолжаем рассматривать задачи из части В ЕГЭ по математике. Мы с вами уже рассмотрели решения некоторых уравнений в статьях « » , « » . В этой статье рассмотрим логарифмические уравнения. Сразу скажу, что никаких сложных преобразований при решении таких уравнений на ЕГЭ не будет. Они просты.

Достаточно знать и понимать основное логарифмическое тождество, знать свойства логарифма. Обратите внимание на то, то после решения ОБЯЗАТЕЛЬНО нужно сделать проверку — подставить полученное значение в исходное уравнение и вычислить, в итоге должно получиться верное равенство.

Определение :

Логарифмом числа a по основанию b называется показатель степени, в который нужно возвести b, чтобы получить a.


Например:

Log 3 9 = 2, так как 3 2 = 9

Свойства логарифмов:

Частные случаи логарифмов:

Решим задачи. В первом примере мы сделаем проверку. В последующих проверку сделайте самостоятельно.

Найдите корень уравнения: log 3 (4–x) = 4

Так как log b a = x b x = a, то

3 4 = 4 – x

x = 4 – 81

x = – 77

Проверка:

log 3 (4–(–77)) = 4

log 3 81 = 4

3 4 = 81 Верно.

Ответ: – 77

Решите самостоятельно:

Найдите корень уравнения: log 2 (4 – x) = 7

Найдите корень уравнения log 5 (4 + x) = 2

Используем основное логарифмическое тождество.

Так как log a b = x b x = a, то

5 2 = 4 + x

x =5 2 – 4

x = 21

Проверка:

log 5 (4 + 21) = 2

log 5 25 = 2

5 2 = 25 Верно.

Ответ: 21

Найдите корень уравнения log 3 (14 – x) = log 3 5.

Имеет место следующее свойство, смысл его таков: если в левой и правой частях уравнения имеем логарифмы с одинаковым основанием, то можем приравнять выражения, стоящие под знаками логарифмов.

14 – x = 5

x = 9

Сделайте проверку.

Ответ: 9

Решите самостоятельно:

Найдите корень уравнения log 5 (5 – x) = log 5 3.

Найдите корень уравнения: log 4 (x + 3) = log 4 (4x – 15).

Если log c a = log c b, то a = b

x + 3 = 4x – 15

3x = 18

x = 6

Сделайте проверку.

Ответ: 6

Найдите корень уравнения log 1/8 (13 – x) = – 2.

(1/8) –2 = 13 – x

8 2 = 13 – x

x = 13 – 64

x = – 51

Сделайте проверку.

Небольшое дополнение – здесь используется свойство

степени ().

Ответ: – 51

Решите самостоятельно:

Найдите корень уравнения: log 1/7 (7 – x) = – 2

Найдите корень уравнения log 2 (4 – x) = 2 log 2 5.

Преобразуем правую часть. воспользуемся свойством:

log a b m = m∙log a b

log 2 (4 – x) = log 2 5 2

Если log c a = log c b, то a = b

4 – x = 5 2

4 – x = 25

x = – 21

Сделайте проверку.

Ответ: – 21

Решите самостоятельно:

Найдите корень уравнения: log 5 (5 – x) = 2 log 5 3

Решите уравнение log 5 (x 2 + 4x) = log 5 (x 2 + 11)

Если log c a = log c b, то a = b

x 2 + 4x = x 2 + 11

4x = 11

x = 2,75

Сделайте проверку.

Ответ: 2,75

Решите самостоятельно:

Найдите корень уравнения log 5 (x 2 + x) = log 5 (x 2 + 10).

Решите уравнение log 2 (2 – x) = log 2 (2 – 3x) +1.

Необходимо с правой стороны уравнения получить выражение вида:

log 2 (......)

Представляем 1 как логарифм с основанием 2:

1 = log 2 2

log с (ab) = log с a + log с b

log 2 (2 – x) = log 2 (2 – 3x) + log 2 2

Получаем:

log 2 (2 – x) = log 2 2 (2 – 3x)

Если log c a = log c b, то a = b, значит

2 – x = 4 – 6x

5x = 2

x = 0,4

Сделайте проверку.

Ответ: 0,4

Решите самостоятельно: Далее необходимо решить квадратное уравнение. Кстати,

корни равны 6 и – 4.

Корень "– 4" не является решением, так как основание логарифма должно быть больше нуля, а при " 4" оно равно « 5». Решением является корень 6. Сделайте проверку.

Ответ: 6.

Решите самостоятельно:

Решите уравнение log x –5 49 = 2. Если уравнение имеет более одного корня, в ответе укажите меньший из них.

Как вы убедились, никаких сложных преобразований с логарифмическими уравнениями нет. Достаточно знать свойства логарифма и уметь применять их. В задачах ЕГЭ, связанных с преобразованием логарифмических выражений, выполняются более серьёзные преобразования и требуются более глубокие навыки в решении. Такие примеры мы рассмотрим, не пропустите! Успехов вам!!!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Алгебра 11 класс

Тема: «Методы решения логарифмических уравнений»

Цели урока:

образовательная: формирование знаний о разных способах решения логарифмических уравнений, умений применять их в каждой конкретной ситуации и выбирать для решения любой способ;

развивающая: развитие умений наблюдать, сравнивать, применять знания в новой ситуации, выявлять закономерности, обобщать; формирование навыков взаимоконтроля и самоконтроля;

воспитательная: воспитание ответственного отношения к учебному труду, внимательного восприятия материала на уроке, аккуратности ведения записей.

Тип урока : урок ознакомления с новым материалом.

«Изобретение логарифмов, сократив работу астронома, продлило ему жизнь».
Французский математик и астроном П.С. Лаплас

Ход урока

I. Постановка цели урока

Изученные определение логарифма, свойства логарифмов и логарифмической функции позволят нам решать логарифмические уравнения. Все логарифмические уравнения, какой бы сложности они не были, решаются по единым алгоритмам. Эти алгоритмы рассмотрим сегодня на уроке. Их немного. Если их освоить, то любое уравнение с логарифмами будет посильно каждому из вас.

Запишите в тетради тему урока: «Методы решения логарифмических уравнений». Приглашаю всех к сотрудничеству.

II. Актуализация опорных знаний

Подготовимся к изучению темы урока. Каждое задание вы решаете и записываете ответ, условие можно не писать. Работайте в парах.

1) При каких значениях х имеет смысл функция:

(По каждому слайду сверяются ответы и разбираются ошибки)

2) Совпадают ли графики функций?

3) Перепишите равенства в виде логарифмических равенств:

4) Запишите числа в виде логарифмов с основанием 2:

5) Вычислите:

6) Попытайтесь восстановить или дополнить недостающие элементы в данных равенствах.

III. Ознакомление с новым материалом

Демонстрируется на экране высказывание:

«Уравнение - это золотой ключ, открывающий все математические сезамы».
Современный польский математик С. Коваль

Попробуйте сформулировать определение логарифмического уравнения. (Уравнение, содержащее неизвестное под знаком логарифма).

Рассмотрим простейшее логарифмическое уравнение: log а x = b (где а>0, a ≠ 1). Так как логарифмическая функция возрастает (или убывает) на множестве положительных чисел и принимает все действительные значения, то по теореме о корне следует, что для любого b данное уравнение имеет, и притом только одно, решение, причем положительное.

Вспомните определение логарифма. (Логарифм числа х по основанию а - это показатель степени, в которую надо возвести основание а, чтобы получить число х). Из определения логарифма сразу следует, что а в является таким решением.

Запишите заголовок: Методы решения логарифмических уравнений

1. По определению логарифма .

Так решаются простейшие уравнения вида .

Рассмотрим № 514(а ): Решить уравнение

Как вы предлагаете его решать? (По определению логарифма)

Решение. , Отсюда 2х - 4 = 4; х = 4.

В этом задании 2х - 4 > 0, так как > 0, поэтому посторонних корней появиться не может, и проверку нет необходимости делать. Условие 2х - 4 > 0 в этом задании выписывать не надо.

2. Потенцирование (переход от логарифма данного выражения к самому этому выражению).

Рассмотрим №519(г): log5(x2+8)-log5(x+1)=3log5 2

Какую особенность вы заметили? (Основания одинаковы и логарифмы двух выражений равны). Что можно сделать? (Потенцировать).

При этом надо учитывать, что любое решение содержится среди всех х, для которых логарифмируемые выражение положительны.

Решение: ОДЗ:

X2+8>0 лишнее неравенство

log5(x2+8) =log5 23+ log5(x+1)

log5(x2+8)= log5 (8 x+8)

Потенцируем исходное уравнение

получим уравнение x2+8= 8x+8

Решаем его: x2-8x=0

Ответ: 0; 8

В общем виде переходом к равносильной системе :

Уравнение

(Система содержит избыточное условие - одно из неравенств можно не рассматривать).

Вопрос классу : Какое из этих трех решений вам больше всего понравилось? (Обсуждение способов).

Вы имеете право решать любым способом.

3. Введение новой переменной .

Рассмотрим № 520(г) . .

Что вы заметили? (Это квадратное уравнение относительно log3x) Ваши предложения? (Ввести новую переменную)

Решение. ОДЗ: х > 0.

Пусть , тогда уравнение примет вид:. Дискриминант D > 0. Корни по теореме Виета:.

Вернемся к замене: или .

Решив простейшие логарифмические уравнения, получим:

Ответ: 27;

4. Логарифмирование обеих частей уравнения.

Решить уравнение:.

Решение: ОДЗ: х>0, прологарифмируем обе части уравнения по основанию 10:

Применим свойство логарифма степени:

(lgx + 3) lgx = 4

Пусть lgx = y, тогда (у + 3)у = 4

, (D > 0) корни по теореме Виета: у1 = -4 и у2 = 1.

Вернемся к замене, получим: lgx = -4,; lgx = 1, .

Ответ: 0,0001; 10.

5. Приведение к одному основанию.

№ 523(в). Решите уравнение:

Решение: ОДЗ: х>0. Перейдем к основанию 3.

6. Функционально-графический метод.

509(г). Решить графически уравнение: = 3 - x.

Как вы предлагаете решать? (Строить по точкам графики двух функций у = log2x и y = 3 - x и искать абсциссу точек пересечения графиков).

Посмотрите ваше решение на слайде.

Есть способ, позволяющий не строить графики. Он заключается в следующем: если одна из функций у = f(x)возрастает, а другая y = g(x) убывает на промежутке Х, то уравнение f(x)= g(x) имеет не более одного корня на промежутке Х .

Если корень имеется, то его можно угадать.

В нашем случае функция возрастает при х>0, а функция y = 3 - x убывает при всех значениях х, в том числе и при х>0, значит, уравнение имеет не более одного корня. Заметим, что при х = 2 уравнение обращается в верное равенство, так как .

«Правильному применению методов можно научиться,
только применяя их на различных примерах».
Датский историк математики Г. Г. Цейтен

I V. Домашнее задание

П. 39 рассмотреть пример 3, решить № 514(б), № 529(б), №520(б), №523(б)

V. Подведение итогов урока

Какие методы решения логарифмических уравнений мы рассмотрели на уроке?

На следующих уроках рассмотрим более сложные уравнения. Для их решения пригодятся изученные методы.

Демонстрируется последний слайд:

«Что есть больше всего на свете?
Пространство.
Что мудрее всего?
Время.
Что приятнее всего?
Достичь желаемого».
Фалес

Желаю всем достичь желаемого. Благодарю за сотрудничество и понимание.



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме