Подпишись и читай
самые интересные
статьи первым!

Дисперсия суммы двух независимых случайных величин. Дисперсия случайной величины

Дисперсией (рассеянием) дискретной случайной величины D(X) называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания

1 свойство . Дисперсия постоянной величины C равна нулю; D(C) = 0.

Доказательство. По определению дисперсии, D(C) = M{ 2 }.

Из первого свойства математического ожидания D(C) = M[(C – C) 2 ] = M(0) = 0.

2 свойство. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:

D(CX) = C 2 D(X)

Доказательство. По определению дисперсии, D(CX) = M{ 2 }

Из второго свойства математического ожидания D(CX)=M{ 2 }= C 2 M{ 2 }=C 2 D(X)

3 свойство. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин:

D = D[X] + D.

Доказательство. По формуле для вычисления дисперсии имеем

D(X + Y) = M[(X + Y) 2 ] − 2

Раскрыв скобки и пользуясь свойствами математического ожидания суммы нескольких величин и произведения двух независимых случайных величин, получим

D(X + Y) = M − 2 = M(X2) + 2M(X)M(Y) + M(Y2) − M2(X) − 2M(X)M(Y) − M2(Y) = {M(X2) − 2}+{M(Y2) − 2} = D(X) + D(Y). Итак, D(X + Y) = D(X) + D(Y)

4 свойство . Дисперсия разности двух независимых случайных величин равна сумме их дисперсий:

D(X − Y) = D(X) + D(Y)

Доказательство. В силу третьего свойства D(X − Y) = D(X) + D(–Y). По второму свойству

D(X − Y) = D(X) + (–1) 2 D(Y) или D(X − Y) = D(X) + D(Y)

Числовые характеристики систем случайных величин. Коэффициент корреляции, свойства коэффициента корреляции.

Корреляционный момент. Характеристикой зависимости между случайными величинами и служит математическое ожидание произведения отклонений и от их центров распределений (так иногда называют математическое ожидание случайной величины), которое называется корреляционным моментом или ковариацией:

Для вычисления корреляционного момента дискретных величин используют формулу:

а для непрерывных величин – формулу:

Коэффициентом корреляции rxy случайных величин X и Y называют отношение корреляционного момента к произведению среднеквадратичных отклонений величин:
- коэффициент корреляции;

Свойства коэффициента корреляции:

1. Если Х и У независимые случайные величины, то r =0;

2. -1≤ r ≤1 .При этом, если |r| =1, то между Х и У функциональная, а именно линейная зависимость;

3. r характеризует относительную величину отклонения М(ХУ) от М(Х)М(У), и т.к. отклонение имеет место только для зависимых величин, то rхарактеризует тесноту зависимости.

Линейная функция регрессии.

Рассмотрим двумерную случайную величину (X, Y), где X и У - зависимые случайные величины. Представим одну из величин как функцию другой. Ограничимся приближенным представлением (точное приближение, вообще говоря, невозможно) величины Y в виде линейной функции величины X:

где α и β - параметры, подлежащие определению.

Теорема. Линейная средняя квадратическая регрессия Y на X имеет вид

где m x =M(X), m y =M(Y), σ x =√D(X), σ y =√D(Y), r=µ xy /(σ x σ y)-коэффициент корреляции величин X и Y.

Коэффициент β=rσ y /σ x называют коэффициентом регрессии Y на X, а прямую

называют прямой среднеквадратической регрессии Y на X.

Неравенство Маркова.

Формулировка неравенства Маркова

Если среди значений случайной величины Х нет отрицательных, то вероятность того, что она примет какое-нибудь значение, превосходящее положительное число А, не больше дроби , т.е.

а вероятность того, что она примет какое-нибудь значение, не превосходящее положительного числа А, не меньше , т.е.

Неравенство Чебышева.

Неравенство Чебышева . Вероятность того, что отклонение случайной величины X от ее математического ожидания по абсолютной величине меньше положительного числа ε, не меньше, чем 1 −D[X]ε 2

P(|X – M(X)| < ε) ≥ 1 –D(X)ε 2

Доказательство. Так как события, состоящие в осуществлении неравенств

P(|X−M(X)| < ε) и P(|X – M(X)| ≥ε) противоположны, то сумма их вероятностей равна единице, т. е.

P(|X – M(X)| < ε) + P(|X – M(X)| ≥ ε) = 1.

Отсюда интересующая нас вероятность

P(|X – M(X)| < ε) = 1 − P(|X – M(X)| > ε).

Таким образом, задача сводится к вычислению вероятности P(|X –M(X)| ≥ ε).

Напишем выражение для дисперсии случайной величины X

D(X) = 2 p1 + 2 p 2 + . . . + 2 p n

Все слагаемые этой суммы неотрицательны. Отбросим те слагаемые, у которых |x i – M(X)| < ε (для оставшихся слагаемых |x j – M(X)| ≥ ε), вследствие чего сумма может только уменьшиться. Условимся считать для определенности, что отброшено k первых слагаемых (не нарушая общности, можно считать, что в таблице распределения возможные значения занумерованы именно в таком порядке). Таким образом,

D(X) ≥ 2 p k+1 + 2 p k+2 + . . . + 2 p n

Обе части неравенства |x j –M(X)| ≥ ε (j = k+1, k+2, . . ., n) положительны, поэтому, возведя их в квадрат, получим равносильное неравенство |x j – M(X)| 2 ≥ε 2 .Заменяя в оставшейся сумме каждый из множителей

|x j – M(X)| 2 числом ε 2 (при этом неравенство может лишь усилиться), получим

D(X) ≥ ε 2 (p k+1 + p k+2 + . . . + p n)

По теореме сложения, сумма вероятностей p k+1 +p k+2 +. . .+p n есть вероятность того, что X примет одно, безразлично какое, из значений x k+1 +x k+2 +. . .+x n , а при любом из них отклонение удовлетворяет неравенству |x j – M(X)| ≥ ε. Отсюда следует, что сумма p k+1 + p k+2 + . . . + p n выражает вероятность

P(|X – M(X)| ≥ ε).

Это позволяет переписать неравенство для D(X) так

D(X) ≥ ε 2 P(|X – M(X)| ≥ ε)

P(|X – M(X)|≥ ε) ≤D(X)/ε 2

Окончательно получим

P(|X – M(X)| < ε) ≥D(X)/ε 2

Теорема Чебышева.

Теорема Чебышева . Если - попарно независимые случайные величины, причем дисперсии их равномерно ограничены (не превышают постоянного числа С), то, как бы мало ни было положительное число ε, вероятность неравенства

будет как угодно близка к единице, если число случайных величин достаточно велико.

Другими словами, в условиях теоремы

Доказательство . Введем в рассмотрение новую случайную величину - среднее арифметическое случайных величин

Найдем математическое ожидание Х. Пользуясь свойствами математического ожидания (постоянный множитель можно вынести за знак математического ожидания, математическое ожидание суммы равно сумме математических ожиданий слагаемых), получим

(1)

Применяя к величине Х неравенство Чебышева, имеем

или, учитывая соотношение (1)

Пользуясь свойствами дисперсии (постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат; дисперсия суммы независимых случайных величин равна сумме дисперсий слагаемых), получим

По условию дисперсии всех случайных величин ограничены постоянным числом С, т.е. имеют место неравенства:

(2)

Подставляя правую часть (2) в неравенство (1) (отчего последнее может быть лишь усилено), имеем

Отсюда, переходя к пределу при n→∞, получим

Наконец, учитывая, что вероятность не может превышать единицу, окончательно можем написать

Теорема доказана.

Теорема Бернулли.

Теорема Бернулли . Если в каждом из n независимых испытаний вероятность p появления события A постоянна, то как угодно близка к единице вероятность того, что отклонение относительной частоты от вероятности p по абсолютной величине будет сколь угодно малым, если число испытаний достаточно велико.

Другими словами, если ε - сколь угодно малое положительное число, то при соблюдении условий теоремы имеет место равенство

Доказательство . Обозначим через X 1 дискретную случайную величину - число появлений события в первом испытании, через X 2 - во втором, ..., X n - в n -м испытании. Ясно, что каждая из величин может принять лишь два значения: 1 (событие A наступило) с вероятностью p и 0 (событие не появилось) с вероятностью .

Наименование параметра Значение
Тема статьи: Свойства дисперсии
Рубрика (тематическая категория) Математика

1.Дисперсия постоянной C равна 0,DC = 0, С = const .

Доказательство . DC = M (С MC ) 2 = М (С С ) = 0.

2. D (CX ) = С 2 DX .

Доказательство. D (CX ) = M (CX ) 2 – M 2 (CX ) = C 2 MX 2 – C 2 (MX ) 2 = C 2 (MX 2 – M 2 X ) = С 2 DX .

3. В случае если X и Y независимые случайные величины , то

Доказательство .

4. В случае если Х 1 , Х 2 , … не зависимы, то .

Это свойство можно доказать методом индукции, используя свойство 3.

Доказательство . D(X – Y) = DX + D(–Y) = DX + (–1) 2 D(Y) = DX + D(Y).

6.

Доказательство . D(C+X) = M(X+C–M(X+C)) 2 = M(X+C–MX–MC) 2 = M(X+C–MX–C) 2 = M(X–MX) 2 = DX.

Пусть – независимые случайные величины, причем, .

Составим новую случайную величину , найдем математическое ожидание и дисперсию Y .

; .

То есть при n ®¥ математическое ожидание среднего арифметического n независимых одинаково распределœенных случайных величин остается неизменным, равным математическому ожиданию а, в то время как дисперсия стремится к нулю.

Это свойство статистической устойчивости среднего арифметического лежит в базе закона больших чисел.

Свойства дисперсии - понятие и виды. Классификация и особенности категории "Свойства дисперсии" 2017, 2018.

  • - Свойства дисперсии

    1) Дисперсия постоянной величины равна нулю. 2) Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат. 3) Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин. 4) Дисперсия разности двух независимых случайных... .


  • - Свойства дисперсии

    1. Дисперсия постоянной равна 0. Доказательство D[с]=0 D[с]=M-M2[c]=c2-c2=0 2. Постоянный множитель можно выносить за знак дисперсии, возводя ее в квадрат. Доказательство: D=c2D[x] D-M-M2=c2M-c2M[x]=c2(2-M[x]])=c2D[x] 3. Дисперсия суммы независимых случайных величин D[х+у]=D[х]+D[у] ... .


  • - Свойства дисперсии

    1.Дисперсия постоянной величины равна нулю. 2.Если у всех значений вариантов отнять какое-то постоянное число А, то средний квадрат отклонений (дисперсия) от этого не изменится. (2.14) Это значит, что дисперсию можно вычислить не по заданным значениям признака, а по их... .


  • - Свойства дисперсии

    Свойство 1.Дисперсия постоянной величины равна нулю: . Доказательство. . С другой стороны постоянная величина сохраняет одно и то же значение и рассеяния не имеет. Свойство 2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат: . Доказательство.... .


  • - Свойства дисперсии.

    1) (под интегралом стоит квадрат функции). 2) (. 3) (выведите сами, вынося из под суммы или из под интеграла). Средним квадратическим отклонением называется. Кроме этих основных числовых характеристик используются коэффициент асимметрии, эксцесс – мера островершинности... .


  • - Свойства дисперсии

    1). Дисперсия неслучайной величины равна 0. D[X]=0 Þ следует из определения. D[X]=M(C-M[C])2=M(0)=0 2). D[X]³0 Это следует из того, что D[X]=M[(X-mx)]2³0 3). Если a и b постоянные, то D=b2·D[X]. Это следует из определения дисперсии. 4). Дисперсия обладает аддитивностью, действительно...

  • Решение.

    В качестве меры рассеивания значений случайной величины используется дисперсия

    Дисперсия (слово дисперсия означает "рассеяние") есть мера рассеивания значений случайной величины относительно ее математического ожидания. Дисперсией называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания

    Если случайная величина - дискретная с бесконечным, но счетным множеством значений, то

    если ряд в правой части равенства сходится.

    Свойства дисперсии.

    • 1. Дисперсия постоянной величины равна нулю
    • 2. Дисперсия суммы случайных величин равна сумме дисперсий
    • 3. Постоянный множитель можно выносить за знак дисперсии в квадрате

    Дисперсия разности случайных величин равна сумме дисперсий

    Это свойство является следствием второго и третьего свойств. Дисперсии могут только складываться.

    Дисперсию удобно вычислять по формуле, которую легко получить, используя свойства дисперсии

    Дисперсия всегда величина положительная .

    Дисперсия имеет размерность квадрата размерности самой случайной величины, что не всегда удобно. Поэтому в качестве показателя рассеяния используют также величину

    Средним квадратическим отклонением (стандартным отклонением или стандартом) случайной величиныназывается арифметическое значение корня квадратного из её дисперсии

    Бросают две монеты достоинством 2 и 5 рублей. Если монета выпадает гербом, то начисляют ноль очков, а если цифрой, то число очков, равное достоинству монеты. Найти математическое ожидание и дисперсию числа очков.

    Решение. Найдем вначале распределение случайной величины Х - числа очков. Все комбинации - (2;5),(2;0),(0;5),(0;0) - равновероятны и закон распределения:

    Математическое ожидание:

    Дисперсию найдем по формуле

    для чего вычислим

    Пример 2.

    Найти неизвестную вероятность р , математическое ожидание и дисперсию дискретной случайной величины, заданной таблицей распределения вероятностей

    Находим математическое ожидание и дисперсию:

    M (X ) = 00,0081 + 10,0756 + 20,2646 + 3 0,4116 + +40,2401=2,8

    Для вычисления дисперсии воспользуемся формулой (19.4)

    D (X ) = 020 ,0081 + 120,0756 + 220,2646 + 320,4116 + 420,2401 - 2,82 = 8,68 -

    Пример 3. Два равносильных спортсмена проводят турнир, который длится или до первой победы одного из них, или до тех пор, пока не будет сыграно пять партий. Вероятность победы в одной партии для каждого из спортсменов равна 0,3, а вероятность ничейного исхода партии 0,4. Найти закон распределения, математическое ожидание и дисперсию числа сыгранных партий.

    Решение. Случайная величина Х - количество сыгранных партий, принимает значения от 1 до 5, т. е.

    Определим вероятности окончания матча. Матч закончится на первой партии, если кто-то их спортсменов выиграл. Вероятность выигрыша равна

    Р (1) = 0,3+0,3 =0,6.

    Если же была ничья (вероятность ничьей равна 1 - 0,6 = 0,4), то матч продолжается. Матч закончится на второй партии, если в первой была ничья, а во второй кто-то выиграл. Вероятность

    Р (2) = 0,4 0,6=0,24.

    Аналогично, матч закончится на третьей партии, если было подряд две ничьи и опять кто-то выиграл

    Р (3) = 0,4 0,4 0,6 = 0,096. Р (4)= 0,4 0,4 0,4 0,6=0,0384.

    Пятая партия в любом варианте последняя.

    Р (5)= 1 - (Р (1)+Р (2)+Р (3)+Р (4)) = 0,0256.

    Сведем все в таблицу. Закон распределения случайной величины "число выигранных партий" имеет вид

    Математическое ожидание

    Дисперсию вычисляем по формуле (19.4)

    Стандартные дискретные распределения.

    Биномиальное распределение. Пусть реализуется схема опытов Бернулли: проводится n одинаковых независимых опытов, в каждом из которых событие A может появиться с постоянной вероятностью p и не появится с вероятностью

    (см. лекцию 18).

    Число появлений события A в этих n опытах есть дискретная случайная величина X , возможные значения которой:

    0; 1; 2; ... ; m ; ... ; n.

    Вероятность появления m событий A в конкретной серии из n опытов с и закон распределения такой случайной величины задается формулой Бернулли (см. лекцию 18)

    Числовые характеристики случайной величины X распределенной по биномиальному закону:

    Если n велико (), то, при, формула (19.6) переходит в формулу

    а табулированная функция Гаусса (таблица значений функции Гаусса приведена в конце 18 лекции).

    На практике часто важна не сама вероятность появления m событий A в конкретной серии из n опытов, а вероятность того, что событие А появится не менее

    раз и не более раз, т. е. вероятность того, что Х принимает значения

    Для этого надо просуммировать вероятности

    Если n велико (), то, при, формула (19.9) переходит в приближенную формулу

    табулированная функция. Таблицы приведены в конце лекции 18.

    При использовании таблиц надо учесть, что

    Пример 1 . Автомобиль, подъезжая к перекрестку, может продолжить движение по любой из трех дорог: A, B или C с одинаковой вероятностью. К перекрестку подъезжают пять автомобилей. Найти среднее число автомашин, которое поедет по дороге A и вероятность того, что по дороге B поедет три автомобиля.

    Решение. Число автомашин проезжающих по каждой из дорог является случайной величиной. Если предположить, что все подъезжающие к перекрестку автомобили совершают поездку независимо друг от друга, то эта случайная величина распределена по биномиальному закону с

    n = 5 и p = .

    Следовательно, среднее число автомашин, которое проследует по дороге A, есть по формуле (19.7)

    а искомая вероятность при

    Пример 2. Вероятность отказа прибора при каждом испытании 0,1. Производится 60 испытаний прибора. Какова вероятность того, что отказ прибора произойдёт: а) 15 раз; б) не более 15 раз?

    а. Так как число испытаний 60, то используем формулу (19.8)

    По таблице 1 приложения к лекции 18 находим

    б . Используем формулу (19.10).

    По таблице 2 приложения к лекции 18

    • - 0,495
    • 0,49995

    Распределение Пуассона) закон редких явлений). Если n велико, а р мало (), при этом произведение пр сохраняет постоянное значение, которое обозначим л,

    то формула (19.6) переходит в формулу Пуассона

    Закон распределения Пуассона имеет вид:

    Очевидно, что определение закона Пуассона корректно, т.к. основное свойство ряда распределения

    выполнено, т.к. сумма ряда

    В скобках записано разложение в ряд функции при

    Теорема. Математическое ожидание и дисперсия случайной величины, распределенной по закону Пуассона, совпадают и равны параметру этого закона, т.е.

    Доказательство.

    Пример. Для продвижения своей продукции на рынок фирма раскладывает по почтовым ящикам рекламные листки. Прежний опыт работы показывает, что примерно в одном случае из 2 000 следует заказ. Найти вероятность того, что при размещении 10 000 рекламных листков поступит хотя бы один заказ, среднее число поступивших заказов и дисперсию числа поступивших заказов.

    Решение . Здесь

    Вероятность того, что поступит хотя бы один заказ, найдем через вероятность противоположного события, т.е.

    Случайный поток событий. Потоком событий называется последовательность событий, происходящие в случайные моменты времени. Типичными примерами потоков являются сбои в компьютерных сетях, вызовы на телефонных станциях, поток заявок на ремонт оборудования и т. д.

    Поток событий называется стационарным , если вероятность попадания того или иного числа событий на временной интервал длины зависит только от длины интервала и не зависит не зависит от расположения временного интервала на оси времени.

    Условию стационарности удовлетворяет поток заявок, вероятностные характеристики которого не зависят от времени. В частности, для стационарного потока характерна постоянная плотность (среднее число заявок в единицу времени). На практике часто встречаются потоки заявок, которые (по крайней мере, на ограниченном отрезке времени) могут рассматриваться как стационарные. Например, поток вызовов на городской телефонной станции на участке времени от 12 до 13 часов может считаться стационарным. Тот же поток в течение целых суток уже не может считаться стационарным (ночью плотность вызовов значительно меньше, чем днем).

    Поток событий называется потоком с отсутствием последействия , если для любых неперекрывающихся участков времени число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие.

    Условие отсутствия последействия - наиболее существенное для простейшего потока - означает, что заявки поступают в систему независимо друг от друга. Например, поток пассажиров, входящие на станцию метро, можно считать потоком без последействия потому, что причины, обусловившие приход отдельного пассажира именно в тот, а не другой момент, как правило, не связаны с аналогичными причинами для других пассажиров. Однако условие отсутствия последействия может быть легко нарушено за счет появления такой зависимости. Например, поток пассажиров, покидающих станцию метро, уже не может считаться потоком без последействия, так как моменты выхода пассажиров, прибывших одним и тем же поездом, зависимы между собой.

    Поток событий называется ординарным , если вероятность попадания на малый интервал времени t двух или более событий пренебрежимо мала по сравнению с вероятностью попадания одного события (в этой связи закон Пуассона называют законом редких событий).

    Условие ординарности означает, что заявки приходят поодиночке, а не парами, тройками и т. д. дисперсия отклонение распределение бернулли

    Например, поток клиентов, входящих в парикмахерскую, может считаться практически ординарным. Если в неординарном потоке заявки поступают только парами, только тройками и т. д., то неординарный поток легко свести к ординарному; для этого достаточно вместо потока отдельных заявок рассмотреть поток пар, троек и т. д. Сложнее будет, если каждая заявка случайным образом может оказаться двойной, тройной и т. д. Тогда уже приходится иметь дело с потоком не однородных, а разнородных событий.

    Если поток событий обладает всеми тремя свойствами (т. е. стационарен, ординарен и не имеет последействия), то он называется простейшим (или стационарным пуассоновским) потоком. Название "пуассоновский" связано с тем, что при соблюдении перечисленных условий число событий, попадающих на любой фиксированный интервал времени, будет распределено по закону Пуассона

    Здесь - среднее число событий A , появляющихся за единицу времени.

    Этот закон однопараметрический, т.е. для его задания требуется знать только один параметр. Можно показать, что математическое ожидание и дисперсия в законе Пуассона численно равны:

    Пример . Пусть в середине рабочего дня среднее число запросов равняется 2 в секунду. Какова вероятность того, что 1) за секунду не поступит ни одной заявки, 2) за две секунды поступит 10 заявок?

    Решение. Поскольку правомерность применения закона Пуассона не вызывает сомнения и его параметр задан (= 2), то решение задачи сводится к применении формулы Пуассона (19.11)

    1) t = 1, m = 0:

    2) t = 2, m = 10:

    Закон больших чисел. Математическим основанием того факта, что значения случайной величины группируются около некоторых постоянных величин, является закон больших чисел.

    Исторически первой формулировкой закона больших чисел стала теорема Бернулли:

    "При неограниченном увеличении числа одинаковых и независимых опытов n частота появления события A сходится по вероятности к его вероятности", т.е.

    где частота появления события A в n опытах,

    Содержательно выражение (19.10) означает, что при большом числе опытов частота появления события A может заменять неизвестную вероятность этого события и чем больше число проведенных опытов, тем ближе р* к р. Интересен исторический факт. К. Пирсон бросал монету 12000 раз и герб у него выпал 6019 раз (частота 0.5016). При бросании этой же монеты 24000 раз он получил 12012 выпадений герба, т.е. частоту 0.5005.

    Наиболее важной формой закона больших чисел является теорема Чебышева: при неограниченном возрастании числа независимых, имеющих конечную дисперсию и проводимых в одинаковых условиях опытов среднее арифметическое наблюденных значений случайной величины сходится по вероятности к ее математическому ожиданию . В аналитической форме эта теорема может быть записана так:

    Теорема Чебышева кроме фундаментального теоретического значения имеет и важное практическое применение, например, в теории измерений. Проведя n измерений некоторой величины х , получают различные несовпадающие значения х 1, х 2, ..., хn . За приближенное значение измеряемой величины х принимают среднее арифметическое наблюденных значений

    При этом, чем больше будет проведено опытов, тем точнее будет полученный результат. Дело в том, что дисперсия величины убывает с возрастанием числа проведенных опытов, т.к.

    D (x 1) = D (x 2)=…= D (xn ) D (x ) , то

    Соотношение (19.13) показывает, что и при высокой неточности приборов измерения (большая величина) за счет увеличения количества измерений можно получать результат со сколь угодно высокой точностью.

    Используя формулу (19.10) можно найти вероятность того, что статистическая частота отклоняется от вероятности не более, чем на

    Пример. Вероятность события в каждом испытании равна 0,4. Сколько нужно провести испытаний, чтобы с вероятностью, не меньшей, чем 0,8 ожидать, что относительная частота события будет отклоняться от вероятности по модулю менее, чем на 0,01?

    Решение. По формуле (19.14)

    следовательно, по таблице два приложения

    следовательно, n 3932.

    Однако на этом тема не заканчивается. У дисперсии есть различные полезные свойства, с которыми мы и познакомимся в данной заметке.

    Дисперсия используется в самых разных формулах и методах анализа. Чтобы хорошо понимать глубинный смысл тех или иных формул, очень неплохо знать, как они образованы. Тогда и анализ данных будет гораздо интереснее и понятнее.

    Итак, формула дисперсии имеет следующий вид:

    Обозначения прежние:

    D – дисперсия,

    x – анализируемый показатель, с чертой сверху – среднее значение показателя,

    n – количество значений в анализируемой совокупности данных.

    Собственно, этот вид формулы напрямую отражает ее суть – средний квадрат отклонений. Но что здесь полезно отметить. В те времена, когда люди еще не имели ПЭВМ, расчеты приходилось делать на листе бумаги или в уме. Дело, конечно, полезное – мозги развивает, но не сильно способствует скорости и точности. Тем не менее, и сегодня можно столкнуться с необходимостью ручных расчетов и манипуляцией с формулой. В этом случае формулу дисперсии удобно представить в другом виде:

    То есть как разницу между средним квадратом и квадратом средней исходных значений. Здесь нет непосредственно отклонений от средней арифметической, что делает формулу значительно проще. Убедимся, что обе формулы расчета дисперсии идентичны. Для этого запишем еще раз первоначальный вид.

    Теперь, раскроем скобки.

    Т.к. средняя арифметическая для заданного набора данных является величиной постоянной, то для удвоенного произведения можно применить :

    Разделим каждое слагаемое числителя на n .

    Последний штрих.

    Все сошлось.

    Предлагаю запомнить такую форму записи. Обязательно пригодиться.

    В предыдущих публикациях ничего не было сказано о том, что по аналогии со средней арифметической дисперсия может быть простой и взвешенной. До сих пор мы рассматривали только простую дисперсию. Но если исходные данные сгруппированы, то веса нужны не только для расчета , но и для расчета дисперсии:

    где f –веса (количество значений в группе).

    Извлекая квадратный корень, получим взвешенное среднеквадратическое отклонение. Как и со средней арифметической, простую дисперсию можно считать частным случаем взвешенной, когда все веса равны единице.

    Ничего сложного здесь нет – в числителе по-прежнему берется сумма всех отклонений, а не только уникальных, а в знаменателе – количество всех наблюдений, даже тех, которые повторяются.

    Малоопытному аналитику часто трудно осознать, как наглядно представить дисперсию. Вот средняя – понятно, что-то в середине. Например, центр масс на рисунке из предыдущей статьи. На этом же рисунке можно рассмотреть и физический смысл дисперсии. Напомню, что мы берем спицу с нанизанными грузиками. Среднее арифметическое из расстояний от начала спицы до каждого из грузиков будет соответствовать точке равновесия. Однако есть еще одна важная физическая характеристика такой системы – момент инерции.

    Наподобие того, как масса тела характеризует его инертность в поступательном движении, момент инерции имеет похожий смысл во вращательном движении. Например, автомобиль из-за своей массы (инертности) не может остановиться мгновенно (разве что во время краш-теста). Точно так трудно мгновенно остановить качели с людьми (типа лодочка в парке культуры и отдыха). Случай с автомобилем – поступательное движение, с качелями – вращательное. В отличие от инерции в поступательном движении момент инерции зависит не только от массы, но еще и от расстояния массы до точки вращения. Чем дальше тело от точки вращения, тем большим моментом инерции оно обладает. Длинное топорище позволят рубить дерево гораздо эффективнее, чем короткое. Вернемся к нашей картинке с грузиками на спице и добавим в нее несколько пояснений.

    В такой системе момент инерции равен сумме произведений квадратов расстояний каждого грузика до точки равновесия и соответствующих масс. Формула момента инерции имеет следующий вид:

    где m – масса отдельного грузика

    Нетрудно заметить, расстояние грузиков до центра является одновременно и отклонением от средней. Масса грузиков в этом случае соответствует весу отклонения (в статистическом смысле). Отсюда легко увидеть, что момент инерции уравновешенной системы – это числитель дисперсии расстояний грузиков до центра масс. Чем дальше грузики от центра, тем больше момент инерции и, соответственно, дисперсия.

    Свойства дисперсии

    Как я уже не раз упоминал, сама по себе дисперсия – показатель малоинформативный. Дисперсию всегда с чем-то сравнивают и используются в других формулах. Отсюда очень важно знать ее математические свойства. Нижеследующее рекомендую прочитать вдумчиво и по возможности запомнить.

    Для большей наглядности обозначим дисперсию как D(X) .

    Свойство 1 . Дисперсия постоянной величины A равна 0 (нулю).

    D(A) = 0 .

    Оно и не удивительно – у постоянной величины нет отклонений.

    Свойство 2 . Если случайную величину умножить на постоянную А , то дисперсия этой случайной величины увеличится в А 2 раз. Другими словами, постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат.

    D(AX) = А 2 D(X) .

    Данное свойство вполне очевидно, если вспомнить, что при расчете дисперсии отклонения от средней возводятся в квадрат.

    Свойство 3 . Если к случайной величине добавить (или отнять) постоянную А, то дисперсия останется неизменной.

    D(A+X) = D(X) .

    Это свойство также вполне понятно, т.к. все значения и их среднее увеличиваются на одну и ту же величину, и при взятии их разностей, величина А просто сокращается.

    Свойство 4 . Если случайные величины X и Y независимы, то дисперсия их суммы равна сумме их дисперсий.

    D(X+Y) = D(X) + D(Y) .

    Учитывая второй способ расчета дисперсии (см. выше), а также математического ожидания, выводится довольно просто:

    D(X+Y) = M(X+Y) 2 — (M(X+Y)) 2 = M(X) 2 + 2M(XY) + M(Y) 2 — (M(X)) 2 — 2M(XY) — (M(Y)) 2 =

    = M(X) 2 — (M(X)) 2 + M(Y) 2 — (M(Y)) 2 = D(X) + D(Y) . Ч. т. д.

    Свойство 5 . Если случайные величины X и Y независимы, то дисперсия их разницы также равна сумме дисперсий.

    D(X-Y) = D(X) + D(Y) .

    Здесь учитывается то, что дисперсия всегда положительна (все отклонения от средней возводятся в квадрат).

    На этой радостной ноте и закончим заметку.

    Всех благ. Приходите еще и приводите своих друзей.

    Тема 8.12. Дисперсия случайной величины.

    О. Дисперсия случайной величины - это математическое ожидание квадрата отклонения случайной величины от её математического ожидания.

    Дисперсия характеризует степень рассеяния значений случайной величины относительно её математического ожидания. Если все значения случайной величины тесно сконцентрированы около её математического ожидания и большие отклонения от математического ожидания маловероятны, то такая случайная величина имеет малую дисперсию. Если значения случайной величины рассеяны и велика вероятность больших отклонений от математического ожидания, то такая случайная величина имеет большую дисперсию.

    Используя определение дисперсии, для дискретной случайной величины формулу вычисления дисперсии можно представить в таком виде:

    Можно вывести ещё одну формулу для вычисления дисперсии:

    Таким образом, дисперсия случайной величины равна разности мате­матического ожидания квадрата случайной величины и квадрата её математи­ческого ожидания.

    Свойства дисперсии.

    Это свойство оставим без доказательства.

    Биномиальный закон распределения.

    Пусть заданы числа n принадлежит N и p (0 <p < 1). Тогда каждому целому числу из промежутка можно поставить в соответствие вероятность, рассчитанную по формуле Бернулли. Получим закон распределения случайной величины (назовём её B(бетта))

    Будем говорить, что случайная величина распределена по закону Бернулли. Такой случайной величиной является частота появления события А в n повторных независимых испытаниях, если в каждом испытании событие А происходит с вероятностью p .

    Рассмотрим отдельное i - е испытание. Пространство элементарных исходов для него имеет вид

    Закон распределения случайной величины рассматривался в предыдущей теме

    Для i = 1,2, ... , n получаем систему из n независимых случайных величин, имеющих одинаковые законы распределения.

    Пример.

    Из 20 отобранных для контроля образцов продукции 4 оказались нестандартными. Оценим вероятность того, что случайно выбранный экземпляр продукции не отвечает стандарту отношением р * = 4/20 = 0,2.

    Так как х случайная величина, р * – тоже случайная величина. Значения р * могут меняться от одного эксперимента к другому (в рассматриваемом случае экспериментом является случайный отбор и контроль 20-ти экземпляров продукции). Каково математическое ожидание р * ? Поскольку х есть случайная величина, обозначающая число успехов в n испытаниях по схеме Бернулли, М( x ) = np . Для математического ожидания случайной величины р * по определению получаем: M (p *) = M(x/n) , но n здесь является константой, поэтому по свойству математического ожидания

    M (p *) = 1/n*M(x)=1/n np=p

    Таким образом, “ в среднем” получается истинное значение р , чего и следовало ожидать. Это свойство оценки р* величины р имеет название: р* является несмещённой оценкой для р . Отсутствие систематического отклонения от величины оцениваемого параметра р подтверждает целесообразность использования величины р* в качестве оценки. Вопрос о точности оценки пока оставляем открытым.

    Перейти на... Новостной форум Новостной форум РП 19.03.01 РП_18.03.02 РП_18.03.02-доп.главы математики Рабочая программа 19.03.03 Задания для студентов заочного отделения Подготовка к контрольной работе "Интегралы" Подготовка к контрольной работе "Интегралы"-2 Подготовка к контрольной работе "Неопределенный интеграл"-3 Тема 1.1 Линейные системы двух уравнений с двумя неизвестными Тема 1.2. Системы линейных алгебраических уравнений Тема 1.3. Метод Гаусса Тема 1.4. Определители и их свойства Тема 1.5. Формулы Крамера. Тема 1.6. Матрицы и действия над ними. Тест 1 "Линейная алгебра" к темам 1.1-1.6 Тест 2 "Линейная алгебра.Системы линейных алгебраических уравнений" к темам 1.1-1.6 Обучающий тест 1 Линейная алгебра Тема 2.1. Скалярное, векторное и смешанное произведения. Тема 2.2 Смешанное произведение Тест 3 "Векторная алгебра" к темам 2.1.-2.1 Тема 3.1. Прямая на плоскости Тема 3.2. Плоскость в пространстве Тема 3.3. Прямая в пространстве Тема 3.4.Кривые второго порядка. Обучающий тест по теме "Аналитическая геометрия" Тест 5 "Аналитическая геометрия" к темам 3.1-3.4 Тест 4 "Аналитическая геометрия" к темам 3.1-.3.4 Презентация на тему "Аналитическая геометрия" Тема 4.1. Функции одной переменной Тема 4.2. Предел последовательности. Предел функции в точке Тема 4.3. Свойства пределов функции Тема 4.4. Бесконечно большие и бесконечно малые функции Тема 4.5. Сравнение бесконечно малых Тема 4.6.Вычисление пределов Тема 4.8. Логарифмическое дифференцирование Тема 4.7Дифференциальное исчисление функции одной переменной. Тема 4.9. Дифференциал функции Тема 4.10 Производные и дифференциалы высших порядков Тема 4.13 Правило Лопиталя Тема 4.11. Производная функции, заданной параметрически Тема 4.12. Производные неявной функции Тема 4.18 Построение графиков функций Тема 5.2 Частные производные Тема 5.3 Дифференциал функции двух переменных Тема 5.4 Производные сложных функций. Комплексные числа. Тест 1 Тема 6.1 Неопределенный интеграл Интегралы. Тест 1 Интегралы. Тест 2 Тест "Определенный интеграл" Обучающий тест за второй семестр Тест по темам "Комплексные числа" и "Неопределенный интеграл" Тема 6.2 Замена переменной в неопределенном интеграле Тема 6.3 Интегрирование по частям Тема 6.4 Интегрирование рациональных дробей с помощью разложения на простейшие дроби Тема 6.5 Универсальная тригонометрическая подстановка Тема 6.6 Определенный интеграл Тема 6.7 Формула Ньютона- Лейбница Тест "Определенный интеграл-усложненный" Тема 6.8 Метод замены переменной в определенном интеграле Тема 6.9 Интегрирование по частям в определенном интеграле Тема 6.10 Геометрические и физические приложения определенного интеграла Приложения определенного интеграла Тема 7.1 Основные понятия о дифференциальных уравнениях Тема 7.2 Дифференциальные уравнения 1-го порядка с разделяющимися переменными Тема 7.3 Линейные уравнения Тема 7.4 Линейные однородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами Тема 7.5 Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами Тест 6 "Пределы функции одной переменной" к темам 4.1-4.6,4.13 Тест 7 "Пределы функции одной переменной" к темам 4.1-4.6,4.13 Тест 8 "Производные" к темам 4.7-4.18 Тест 9 "Дифференциальные исчисление функции одной переменной" к темам 4.7-4.18 Тест 10 "Пределы и производные функции одной переменной" к темам 4.1-4.18 Тест 11 "Функции нескольких переменных" к темам 5.1-5.5 Вопрос 1.59 Неопределенный интеграл Интегралы Тест №1 Интегралы Тест №2 Интегралы Тест№3 Интегралы Тест№4 Определенный интеграл Дифференциальные уравнения Тест 2 Дифференциальные уравнения Тест 3 Дифференциальные уравнения Тест 4 Дифференциальные уравнения Тест 5 Двойной интеграл- Тест 1 Двойные интегралы - Тест 2 Двойные интегралы - Тест 3 Криволинейные интегралы Тест -1 Криволинейные интегралы Тест-2 Криволинейные интегралы Тест-3 Теория поля Тест 1 Теория поля - Тест 2 Тест 1 на тему:"Ряды" Тест 2 на тему:"Ряды" Элементы теории вероятностей Тест 1 Элементы теории вероятностей Тест 2 Практика для тем 11.1-11.2 Экзамен 1 Билет 1 Экзамен 1 билет 1С (на повышенную оценку) Глоссарий Литература


    Включайся в дискуссию
    Читайте также
    Определение места отбывания наказания осужденного
    Осужденному это надо знать
    Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме