Подпишись и читай
самые интересные
статьи первым!

Остроугольный треугольник. Виды треугольников, углы и стороны

Как правило, два треугольника считаются подобными если они имеют одинаковую форму, даже если они различаются размерами, повернуты или даже перевернуты.

Математическое представление двух подобных треугольников A 1 B 1 C 1 и A 2 B 2 C 2 , показанных на рисунке, записывается следующим образом:

ΔA 1 B 1 C 1 ~ ΔA 2 B 2 C 2

Два треугольника являются подобными если:

1. Каждый угол одного треугольника равен соответствующему углу другого треугольника:
∠A 1 = ∠A 2 , ∠B 1 = ∠B 2 и∠C 1 = ∠C 2

2. Отношения сторон одного треугольника к соответствующим сторонам другого треугольника равны между собой:
$\frac{A_1B_1}{A_2B_2}=\frac{A_1C_1}{A_2C_2}=\frac{B_1C_1}{B_2C_2}$

3. Отношения двух сторон одного треугольника к соответствующим сторонам другого треугольника равны между собой и при этом
углы между этими сторонами равны:
$\frac{B_1A_1}{B_2A_2}=\frac{A_1C_1}{A_2C_2}$ и $\angle A_1 = \angle A_2$
или
$\frac{A_1B_1}{A_2B_2}=\frac{B_1C_1}{B_2C_2}$ и $\angle B_1 = \angle B_2$
или
$\frac{B_1C_1}{B_2C_2}=\frac{C_1A_1}{C_2A_2}$ и $\angle C_1 = \angle C_2$

Не нужно путать подобные треугольники с равными треугольниками. У равных треугольников равны соответствующие длины сторон. Поэтому для равных треугольников:

$\frac{A_1B_1}{A_2B_2}=\frac{A_1C_1}{A_2C_2}=\frac{B_1C_1}{B_2C_2}=1$

Из этого следует что все равные треугольники являются подобными. Однако не все подобные треугольники являются равными.

Несмотря на то, что вышеприведенная запись показывает, что для выяснения, являются ли два треугольника подобными или нет, нам должны быть известны величины трех углов или длины трех сторон каждого треугольника, для решения задач с подобными треугольниками достаточно знать любые три величины из указанных выше для каждого треугольника. Эти величины могут составлять различные комбинации:

1) три угла каждого треугольника (длины сторон треугольников знать не нужно).

Или хотя бы 2 угла одного треугольника должны быть равны 2-м углам другого треугольника.
Так как если 2 угла равны, то третий угол также будет равным.(Величина третьего угла составляет 180 - угол1 - угол2)

2) длины сторон каждого треугольника (углы знать не нужно);

3) длины двух сторон и угол между ними.

Далее мы рассмотрим решение некоторых задач с подобными треугольниками. Сначала мы рассмотрим задачи, которые можно решить непосредственным использованием вышеуказанных правил, а затем обсудим некоторые практические задачи, которые решаются по методу подобных треугольников.

Практические задачи с подобными треугольниками

Пример №1: Покажите, что два треугольника на рисунке внизу являются подобными.

Решение:
Так как длины сторон обоих треугольников известны, то здесь можно применить второе правило:

$\frac{PQ}{AB}=\frac{6}{2}=3$ $\frac{QR}{CB}=\frac{12}{4}=3$ $\frac{PR}{AC}=\frac{15}{5}=3$

Пример №2: Покажите, что два данных треугольника являются подобными и определите длины сторон PQ и PR .

Решение:
∠A = ∠P и ∠B = ∠Q, ∠C = ∠R (так как ∠C = 180 - ∠A - ∠B и ∠R = 180 - ∠P - ∠Q)

Из этого следует, что треугольники ΔABC и ΔPQR подобны. Следовательно:
$\frac{AB}{PQ}=\frac{BC}{QR}=\frac{AC}{PR}$

$\frac{BC}{QR}=\frac{6}{12}=\frac{AB}{PQ}=\frac{4}{PQ} \Rightarrow PQ=\frac{4\times12}{6} = 8$ и
$\frac{BC}{QR}=\frac{6}{12}=\frac{AC}{PR}=\frac{7}{PR} \Rightarrow PR=\frac{7\times12}{6} = 14$

Пример №3: Определите длину AB в данном треугольнике.

Решение:

∠ABC = ∠ADE, ∠ACB = ∠AED и ∠A общий => треугольники ΔABC и ΔADE являются подобными.

$\frac{BC}{DE} = \frac{3}{6} = \frac{AB}{AD} = \frac{AB}{AB + BD} = \frac{AB}{AB + 4} = \frac{1}{2} \Rightarrow 2\times AB = AB + 4 \Rightarrow AB = 4$

Пример №4: Определить длину AD (x) геометрической фигуры на рисунке.

Треугольники ΔABC и ΔCDE являются подобными так как AB || DE и у них общий верхний угол C.
Мы видим, что один треугольник является масштабированной версией другого. Однако нам нужно это доказать математически.

AB || DE, CD || AC и BC || EC
∠BAC = ∠EDC и ∠ABC = ∠DEC

Исходя из вышеизложенного и учитывая наличие общего угла C , мы можем утверждать, что треугольники ΔABC и ΔCDE подобны.

Следовательно:
$\frac{DE}{AB} = \frac{7}{11} = \frac{CD}{CA} = \frac{15}{CA} \Rightarrow CA = \frac{15 \times 11}{7} = 23.57$
x = AC - DC = 23.57 - 15 = 8.57

Практические примеры

Пример №5: На фабрике используется наклонная конвеерная лента для транспортировки продукции с уровня 1 на уровень 2, который выше уровня 1 на 3 метра, как показано на рисунке. Наклонный конвеер обслуживается с одного конца до уровня 1 и с другого конца до рабочего места, расположенного на расстоянии 8 метров от рабочей точки уровня 1.

Фабрика хочет модернизировать конвеер для доступа к новому уровню, который находится на расстоянии 9 метров над уровнем 1, и при этом сохранить угол наклона конвеера.

Определите расстояние, на котором нужно установить новый рабочий пункт для обеспечения работы конвеера на его новом конце на уровне 2. Также вычислите дополнительное расстояние, которое пройдет продукция при перемещении на новый уровень.

Решение:

Для начала давайте обозначим каждую точку пересечения определенной буквой, как показано на рисунке.

Исходя из рассуждений, приведенных выше в предыдущих примерах, мы можем сделать вывод о том, что треугольники ΔABC и ΔADE являются подобными. Следовательно,

$\frac{DE}{BC} = \frac{3}{9} = \frac{AD}{AB} = \frac{8}{AB} \Rightarrow AB = \frac{8 \times 9}{3} = 24 м$
x = AB - 8 = 24 - 8 = 16 м

Таким образом, новый пункт должен быть установлен на расстоянии 16 метров от уже существующего пункта.

А так как конструкция состоит из прямоугольных треугольников, мы можем вычислить расстояние перемещения продукции следующим образом:

$AE = \sqrt{AD^2 + DE^2} = \sqrt{8^2 + 3^2} = 8.54 м$

Аналогично, $AC = \sqrt{AB^2 + BC^2} = \sqrt{24^2 + 9^2} = 25.63 м$
что является расстоянием, которое проходит продукция в данный момент при попадании на существующий уровень.

y = AC - AE = 25.63 - 8.54 = 17.09 м
это дополнительное расстояние, которое должна пройти продукция для достижения нового уровня.

Пример №6: Стив хочет навестить своего приятеля, который недавно переехал в новый дом. Дорожная карта проезда к дому Стива и его приятеля вместе с известными Стиву расстояниями показана на рисунке. Помогите Стиву добраться к дому его приятеля наиболее коротким путем.

Решение:

Дорожную карту можно геометрически представить в следующем виде, как показано на рисунке.

Мы видим, что треугольники ΔABC и ΔCDE подобны, следовательно:
$\frac{AB}{DE} = \frac{BC}{CD} = \frac{AC}{CE}$

В условии задачи сказано, что:

AB = 15 км, AC = 13.13 км, CD = 4.41 км и DE = 5 км

Используя эту информацию, мы можем вычислить следующие расстояния:

$BC = \frac{AB \times CD}{DE} = \frac{15 \times 4.41}{5} = 13.23 км$
$CE = \frac{AC \times CD}{BC} = \frac{13.13 \times 4.41}{13.23} = 4.38 км$

Стив может добраться к дому своего друга по следующим маршрутам:

A -> B -> C -> E -> G, суммарное расстояние равно 7.5+13.23+4.38+2.5=27.61 км

F -> B -> C -> D -> G, суммарное расстояние равно 7.5+13.23+4.41+2.5=27.64 км

F -> A -> C -> E -> G, суммарное расстояние равно 7.5+13.13+4.38+2.5=27.51 км

F -> A -> C -> D -> G, суммарное расстояние равно 7.5+13.13+4.41+2.5=27.54 км

Следовательно, маршрут №3 является наиболее коротким и может быть предложен Стиву.

Пример 7:
Триша хочет измерить высоту дома, но у нее нет нужных инструментов. Она заметила, что перед домом растет дерево и решила применить свою находчивость и знания геометрии, полученные в школе, для определения высоты здания. Она измерила расстояние от дерева до дома, результат составил 30 м. Затем она встала перед деревом и начала отходить назад, пока верхний край здания стал виден над верхушкой дерева. Триша отметила это место и измерила расстояние от него до дерева. Это расстояние составило 5 м.

Высота дерева равна 2.8 м, а высота уровня глаз Триши равна 1.6 м. Помогите Трише определить высоту здания.

Решение:

Геометрическое представление задачи показано на рисунке.

Сначала мы используем подобность треугольников ΔABC и ΔADE.

$\frac{BC}{DE} = \frac{1.6}{2.8} = \frac{AC}{AE} = \frac{AC}{5 + AC} \Rightarrow 2.8 \times AC = 1.6 \times (5 + AC) = 8 + 1.6 \times AC$

$(2.8 - 1.6) \times AC = 8 \Rightarrow AC = \frac{8}{1.2} = 6.67$

Затем мы можем использовать подобность треугольников ΔACB и ΔAFG или ΔADE и ΔAFG. Давайте выберем первый вариант.

$\frac{BC}{FG} = \frac{1.6}{H} = \frac{AC}{AG} = \frac{6.67}{6.67 + 5 + 30} = 0.16 \Rightarrow H = \frac{1.6}{0.16} = 10 м$

Выберите рубрику Книги Математика Физика Контроль и управления доступом Пожарная безопасность Полезное Поставщики оборудования Cредства измерений (КИП) Измерение влажности — поставщики в РФ. Измерение давления. Измерение расходов. Расходомеры. Измерение температуры Измерение уровней. Уровнемеры. Бестраншейные технологии Канализационные системы. Поставщики насосов в РФ. Ремонт насосов. Трубопроводная арматура. Затворы поворотные (дисковые затворы). Обратные клапаны. Регулирующая арматура. Фильтры сетчатые, грязевики, магнито-механические фильтры. Шаровые краны. Трубы и элементы трубопроводов. Уплотнения резьб, фланцев и т.д. Электродвигатели, электроприводы… Руководство Алфавиты, номиналы, единицы, коды… Алфавиты, в т.ч. греческий и латинский. Символы. Коды. Альфа, бета, гамма, дельта, эпсилон… Номиналы электрических сетей. Перевод единиц измерения Децибел. Сон. Фон. Единицы измерения чего? Единицы измерения давления и вакуума. Перевод единиц измерения давления и вакуума. Единицы измерения длины. Перевод единиц измерения длины (линейного размера, расстояний). Единицы измерения объема. Перевод единиц измерения объема. Единицы измерения плотности. Перевод единиц измерения плотности. Единицы измерения площади. Перевод единиц измерения площади. Единицы измерения твердости. Перевод единиц измерения твердости. Единицы измерения температуры. Перевод единиц температур в шкалах Кельвина (Kelvin) / Цельсия (Celsius) / Фаренгейта (Fahrenheit) / Ранкина (Rankine) / Делисле (Delisle) / Ньютона (Newton) / Реамюрa Единицы измерения углов ("угловых размеров"). Перевод единиц измерения угловой скорости и углового ускорения. Стандартные ошибки измерений Газы различные как рабочие среды. Азот N2 (хладагент R728) Аммиак (холодильный агент R717). Антифризы. Водород H^2 (хладагент R702) Водяной пар. Воздух (Атмосфера) Газ природный — натуральный газ. Биогаз — канализационный газ. Сжиженный газ. ШФЛУ. LNG. Пропан-бутан. Кислород O2 (хладагент R732) Масла и смазки Метан CH4 (хладагент R50) Свойства воды. Угарный газ CO. Монооксид углерода. Углекислый газ CO2. (Холодильный агент R744). Хлор Cl2 Хлороводород HCl, он же — Cоляная кислота. Холодильные агенты (хладагенты). Хладагент (холодильный агент) R11 — Фтортрихлорметан (CFCI3) Хладагент (Холодильный агент) R12 — Дифтордихлорметан (CF2CCl2) Хладагент (Холодильный агент) R125 — Пентафторэтан (CF2HCF3). Хладагент (Холодильный агент) R134а — 1,1,1,2-Тетрафторэтан (CF3CFH2). Хладагент (Холодильный агент) R22 — Дифторхлорметан (CF2ClH) Хладагент (Холодильный агент) R32 — Дифторметан (CH2F2). Хладагент (Холодильный агент) R407С — R-32 (23%)/ R-125 (25%)/ R-134a (52%)/ Проценты по массе. другие Материалы — тепловые свойства Абразивы — зернистость, мелкость, шлифовальное оборудование. Грунты, земля, песок и другие породы. Показатели разрыхления, усадки и плотности грунтов и пород. Усадка и разрыхление, нагрузки. Углы откоса, отвала. Высоты уступов, отвалов. Древесина. Пиломатериалы. Лесоматериалы. Бревна. Дрова… Керамика. Клеи и клеевые соединения Лед и снег (водяной лед) Металлы Алюминий и сплавы алюминия Медь, бронзы и латуни Бронза Латунь Медь (и классификация медных сплавов) Никель и сплавы Соответствие марок сплавов Стали и сплавы Cправочные таблицы весов металлопроката и труб. +/-5% Вес трубы. Вес металла. Механические свойства сталей. Чугун Минералы. Асбест. Продукты питания и пищевое сырье. Свойства и пр. Ссылка на другой раздел проекта. Резины, пластики, эластомеры, полимеры. Подробное описание Эластомеров PU, ТPU, X-PU, H-PU, XH-PU, S-PU, XS-PU, T-PU, G-PU (CPU), NBR, H-NBR, FPM, EPDM, MVQ, TFE/P, POM, PA-6, TPFE-1, TPFE-2, TPFE-3, TPFE-4, TPFE-5 (PTFE модифицированный), Сопротивление материалов. Сопромат. Строительные материалы. Физические, механические и теплотехнические свойства. Бетон. Бетонный раствор. Раствор. Строительная арматура. Стальная и прочая. Таблицы применимости материалов. Химическая стойкость. Температурная применимость. Коррозионная стойкость. Уплотнительные материалы — герметики соединений. PTFE (фторопласт-4) и производные материалы. Лента ФУМ. Анаэробные клеи Герметики невысыхающие (незастывающие). Герметики силиконовые (кремнийорганические). Графит, асбест, парониты и производные материалы Паронит. Терморасширенный графит (ТРГ, ТМГ), композиции. Свойства. Применение. Производство. Лен сантехнический Уплотнители резиновых эластомеров Утеплители и теплоизоляционные материалы. (ссылка на раздел проекта) Инженерные приемы и понятия Взрывозащита. Защита от воздействия окружающей среды. Коррозия. Климатические исполнения (Таблицы совместимости материалов) Классы давления, температуры, герметичности Падение (потеря) давления. — Инженерное понятие. Противопожарная защита. Пожары. Теория автоматического управления (регулирования). ТАУ Математический справочник Арифметическая, Геометрическая прогрессии и суммы некоторых числовых рядов. Геометрические фигуры. Свойства, формулы: периметры, площади, объемы, длины. Треугольники, Прямоугольники и т.д. Градусы в радианы. Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д. Площади неправильных фигур, объемы неправильных тел. Средняя величина сигнала. Формулы и способы расчета площади. Графики. Построение графиков. Чтение графиков. Интегральное и дифференциальное исчисление. Табличные производные и интегралы. Таблица производных. Таблица интегралов. Таблица первообразных. Найти производную. Найти интеграл. Диффуры. Комплексные числа. Мнимая единица. Линейная алгебра. (Вектора, матрицы) Математика для самых маленьких. Детский сад — 7 класс. Математическая логика. Решение уравнений. Квадратные и биквадратные уравнения. Формулы. Методы. Решение дифференциальных уравнений Примеры решений обыкновенных дифференциальных уравнений порядка выше первого. Примеры решений простейших = решаемых аналитически обыкновенных дифференциальных уравнений первого порядка. Системы координат. Прямоугольная декартова, полярная, цилиндрическая и сферическая. Двухмерные и трехмерные. Системы счисления. Числа и цифры (действительные, комплексные, ….). Таблицы систем счисления. Степенные ряды Тейлора, Маклорена (=Макларена) и периодический ряд Фурье. Разложение функций в ряды. Таблицы логарифмов и основные формулы Таблицы численных значений Таблицы Брадиса. Теория вероятностей и статистика Тригонометрические функции, формулы и графики. sin, cos, tg, ctg….Значения тригонометрических функций. Формулы приведения тригонометрических функций. Тригонометрические тождества. Численные методы Оборудование — стандарты, размеры Бытовая техника, домашнее оборудование. Водосточные и водосливные системы. Емкости, баки, резервуары, танки. КИПиА Контрольно-измерительные приборы и автоматика. Измерение температуры. Конвейеры, ленточные транспортеры. Контейнеры (ссылка) Крепеж. Лабораторное оборудование. Насосы и насосные станции Насосы для жидкостей и пульп. Инженерный жаргон. Словарик. Просеивание. Фильтрация. Сепарация частиц через сетки и сита. Прочность примерная веревок, тросов, шнуров, канатов из различных пластиков. Резинотехнические изделия. Сочленения и присоединения. Диаметры условные, номинальные, Ду, DN, NPS и NB. Метрические и дюймовые диаметры. SDR. Шпонки и шпоночные пазы. Стандарты коммуникации. Сигналы в системах автоматизации (КИПиА) Аналоговые входные и выходные сигналы приборов, датчиков, расходомеров и устройств автоматизации. Интерфейсы подключения. Протоколы связи (коммуникации) Телефонная связь. Трубопроводная арматура. Краны, клапаны, задвижки…. Строительные длины. Фланцы и резьбы. Стандарты. Присоединительные размеры. Резьбы. Обозначения, размеры, использование, типы… (справочная ссылка) Соединения ("гигиенические", "асептические") трубопроводов в пищевой, молочной и фармацевтической промышленности. Трубы, трубопроводы. Диаметры труб и другие характеристики. Выбор диаметра трубопровода. Скорости потока. Расходы. Прочность. Таблицы выбора, Падение давления. Трубы медные. Диаметры труб и другие характеристики. Трубы поливинилхлоридные (ПВХ). Диаметры труб и другие характеристики. Трубы полиэтиленовые. Диаметры труб и другие характеристики. Трубы полиэтиленовые ПНД. Диаметры труб и другие характеристики. Трубы стальные (в т.ч. нержавеющие). Диаметры труб и другие характеристики. Труба стальная. Труба нержавеющая. Трубы из нержавеющей стали. Диаметры труб и другие характеристики. Труба нержавеющая. Трубы из углеродистой стали. Диаметры труб и другие характеристики. Труба стальная. Фитинги. Фланцы по ГОСТ, DIN (EN 1092-1) и ANSI (ASME). Соединение фланцев. Фланцевые соединения. Фланцевое соединение. Элементы трубопроводов. Электрические лампы Электрические разъемы и провода (кабели) Электродвигатели. Электромоторы. Электрокоммутационные устройства. (Ссылка на раздел) Стандарты личной жизни инженеров География для инженеров. Расстояния, маршруты, карты….. Инженеры в быту. Семья, дети, отдых, одежда и жилье. Детям инженеров. Инженеры в офисах. Инженеры и другие люди. Социализация инженеров. Курьезы. Отдыхающие инженеры. Это нас потрясло. Инженеры и еда. Рецепты, полезности. Трюки для ресторанов. Международная торговля для инженеров. Учимся думать барыжным образом. Транспорт и путешествия. Личные автомобили, велосипеды…. Физика и химия человека. Экономика для инженеров. Бормотология финансистов — человеческим языком. Технологические понятия и чертежи Бумага писчая, чертежная, офисная и конверты. Стандартные размеры фотографий. Вентиляция и кондиционирование. Водоснабжение и канализация Горячее водоснабжение (ГВС). Питьевое водоснабжение Сточная вода. Холодное водоснабжение Гальваническая промышленность Охлаждение Паровые линии / системы. Конденсатные линии / системы. Паропроводы. Конденсатопроводы. Пищевая промышленность Поставка природного газа Сварочные металлы Символы и обозначения оборудования на чертежах и схемах. Условные графические изображения в проектах отопления, вентиляции, кондиционирования воздуха и теплохолодоснабжения, согласно ANSI/ASHRAE Standard 134-2005. Стерилизация оборудования и материалов Теплоснабжение Электронная промышленность Электроснабжение Физический справочник Алфавиты. Принятые обозначения. Основные физические константы. Влажность абсолютная, относительная и удельная. Влажность воздуха. Психрометрические таблицы. Диаграммы Рамзина. Время Вязкость, Число Рейнольдса (Re). Единицы измерения вязкости. Газы. Свойства газов. Индивидуальные газовые постоянные. Давление и Вакуум Вакуум Длина, расстояние, линейный размер Звук. Ультразвук. Коэффициенты звукопоглощения (ссылка на другой раздел) Климат. Климатические данные. Природные данные. СНиП 23-01-99. Строительная климатология. (Статистика климатических данных) СНИП 23-01-99 .Таблица 3 — Средняя месячная и годовая температура воздуха, °С. Бывший СССР. СНИП 23-01-99 Таблица 1. Климатические параметры холодного периода года. РФ. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. Бывший СССР. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. РФ. СНИП 23-01-99 Таблица 3. Средняя месячная и годовая температура воздуха, °С. РФ. СНиП 23-01-99. Таблица 5а* — Среднее месячное и годовое парциальное давление водяного пара, гПа = 10^2 Па. РФ. СНиП 23-01-99. Таблица 1. Климатические параметры холодного времени года. Бывший СССР. Плотности. Веса. Удельный вес. Насыпная плотность. Поверхностное натяжение. Растворимость. Растворимость газов и твердых веществ. Свет и цвет. Коэффициенты отражения, поглощения и преломления Цветовой алфавит:) — Обозначения (кодировки) цвета (цветов). Свойства криогенных материалов и сред. Таблицы. Коэффициенты трения для различных материалов. Тепловые величины, включая температуры кипения, плавления, пламени и т.д …… дополнительная информация см.: Коэффициенты (показатели) адиабаты. Конвекционный и полный теплообмен. Коэффициенты теплового линейного расширения, теплового объемного расширения. Температуры, кипения, плавления, прочие… Перевод единиц измерения температуры. Воспламеняемость. Температура размягчения. Температуры кипения Температуры плавления Теплопроводность. Коэффициенты теплопроводности. Термодинамика. Удельная теплота парообразования (конденсации). Энтальпия парообразования. Удельная теплота сгорания (теплотворная способность). Потребность в кислороде. Электрические и магнитные величины Дипольные моменты электрические. Диэлектрическая проницаемость. Электрическая постоянная. Длины электромагнитных волн (справочник другого раздела) Напряженности магнитного поля Понятия и формулы для электричества и магнетизма. Электростатика. Пьезоэлектрические модули. Электрическая прочность материалов Электрический ток Электрическое сопротивление и проводимость. Электронные потенциалы Химический справочник "Химический алфавит (словарь)" — названия, сокращения, приставки, обозначения веществ и соединений. Водные растворы и смеси для обработки металлов. Водные растворы для нанесения и удаления металлических покрытий Водные растворы для очистки от нагара (асфальтосмолистого нагара, нагара двигателей внутреннего сгорания…) Водные растворы для пассивирования. Водные растворы для травления — удаления окислов с поверхности Водные растворы для фосфатирования Водные растворы и смеси для химического оксидирования и окрашивания металлов. Водные растворы и смеси для химического полирования Обезжиривающие водные растворы и органические растворители Водородный показатель pH. Таблицы показателей pH. Горение и взрывы. Окисление и восстановление. Классы, категории, обозначения опасности (токсичности) химических веществ Периодическая система химических элементов Д.И.Менделеева. Таблица Менделеева. Плотность органических растворителей (г/см3)в зависимости от температуры. 0-100 °С. Свойства растворов. Константы диссоциации, кислотности, основности. Растворимость. Смеси. Термические константы веществ. Энтальпии. Энтропии. Энергии Гиббса… (ссылка на химический справочник проекта) Электротехника Регуляторы Системы гарантированного и бесперебойного электроснабжения. Системы диспетчеризации и управления Структурированные кабельные системы Центры обработки данных

Длины сторон треугольника (короче, стороны треугольника) не могут быть заданы произвольно. Действительно, для произвольного треугольника АВС сумма двух любых сторон больше третей стороны: АВ + ВС > АС, так как ломаная длиннее отрезка прямой. Из этого же неравенства находим АС – АВ < ВС, то есть разность двух любых сторон треугольника меньше его третей стороны. Например, из отрезков а = 5, b = 8, с = 14 нельзя построить треугольник, так как 14>5+8. Если же даны три отрезка a , b , c такие, что больший из них меньше суммы двух других, то можно построить треугольник, то можно построить треугольник, имеющий данные отрезки своими сторонами. Итак,
Теорема 1. Сумма длин двух любых сторон треугольника больше длины третьей стороны этого треугольника. (a + b > c , где с – наибольший из трех отрезков).
Доказательство: Пусть ABC - данный треугольник. Докажем, что AB + AC > BC. Опустим из вершины A этого треугольника высоту AD. Рассмотрим два случая:
1) Точка D принадлежит отрезку BC, или совпадает с его концами (рис.1). В этом случае AB>DB и AC>DC, так как длина наклонной больше длины проекции наклонной. Сложив эти два неравенства, получим, что AB + AC > BD + DC = BC. Что и требовалось доказать.
2) Точка D не принадлежит отрезку BC (рис.2). В этом случае BD Для остальных пар сторон неравенство треугольника доказывается аналогично. Теорема доказана полностью.
Теорема 2. Сумма углов любого треугольника равна 180 градусов.
Доказательство. Рассмотрим произвольный треугольник АВС и проведем через одну из его вершин, например В , прямую BD , параллельную противоположной стороне АС. Теперь из чертежа ясно, что ∠ 1’ = ∠ 1 и ∠ 2’ = ∠ 2 (накрест лежащие углы), и так как 1’ + 2’ + 3 = 180°, то 1 + 2 + 3 = 180°, что и требовалось доказать.

Продолжая сторону АС, находим как следствие:

Теорема 3. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.
Теорема 3.1 Тем самым, внешний угол треугольника больше каждого из его внутренних углов, с ним не смежных.
Действительно, на рисунке ∠ 4=180°-∠ 2 (как смежные)
Также ∠ 2=180°-(∠ 1+∠ 3)
Подставляя второе выражение в первое, получаем: ∠ 4=∠ 1+∠ 3
Ну, а так как ни один из углов не может равняться нулю, каждый из этих углов меньше внешнего, например, ∠ 1=∠ 4-∠ 3 или ∠ 1<∠ 4
Таким образом, зная два угла треугольника, можно найти и третий. Ясно также, что если один угол в треугольнике прямой или тупой, то два других его угла острые.
Определение 1. Если один угол треугольника тупой, то треугольник называется тупоугольным.
Определение 2. Если один угол треугольника прямой, то треугольник называется прямоугольным.
Определение 3. Если все три угла треугольника острые, то треугольник называется остроугольным.
Из задач на построение треугольников видно, что при любых данных положительных углах α , β , γ , составляющих в сумме два прямых, существуют треугольники, имеющие α , β , γ своими внутренними углами. Итак,
Теорема 4. Условие a + b + g = 180° необходимо и достаточно для существования треугольника с углами a , b , g . Так как внешний угол треугольника дополняет внутренний смежный с ним угол до развернутого угла, то
Теорема 5. Сумма внешних углов треугольника равна 360°.
Связь между величинами сторон и углов треугольника устанавливает следующая
Теорема 6 . Против большей стороны в треугольнике лежит больший угол.
Теорема 6.1 . Против равных сторон лежат равные углы.
Теорема 7 . В любом треугольнике против большего угла лежит большая сторона.
Теорема 7.1 . Против равных углов лежат равные стороны.
Доказательство. Применим свойство наклонных. Пусть в треугольнике АВС сторона АС больше стороны ВС. Проведем высоту СМ треугольника. Так как наклонная СВ меньше наклонной СА, то её основание В лежит ближе к основанию высоты СМ, чем основание А наклонной СА. Поэтому, если перегнуть рисунок по СМ, то угол при вершине В перейдет во внешний угол B ’ треугольника АСB ’ и, следовательно, будет больше угла А, как внутреннего с ним не смежного. Итак, если между сторонами треугольника имеются неравентсва a < b < c , то соответственно и противолежащие углы удовлетворяют неравенствам a < b < g . Равенство углов, лежащих против равных сторон, сразу получится, если учесть, что равные наклонные расположены относительно перпендикуляра симметрично и совмещаются при сгибе плоскости по перпендикуляру. При этом совмещаются и углы, равенство которых должно быть доказано.
Обратное утверждение, говорящее, что против большего угла лежит большая сторона, получается рассуждением от противного. Так, пусть a < b . Если бы мы имели a > b или a = b , то должно было бы быть a > b или a = b , что противоречит условию. Поэтому a < b , что и требовалось доказать. Так же доказывается, что против равных углов расположены равные стороны. В частности, равносторонний треугольник является и равноугольным. Каждый из его углов в этом случае равен 60°

Начальный уровень

Треугольник. Исчерпывающий гид (2019)

На тему «Треугольник», пожалуй, можно было бы написать целую книжку. Но книжку целиком читать слишком долго, правда? Поэтому мы здесь рассмотрим только факты, которые касаются вообще любого треугольника, а всякие специальные темы, такие как , и т.д. выделены в отдельные темы - читай книжку по кусочкам. Ну вот, что же касается любого треугольника.

1. Сумма углов треугольника. Внешний угол.

Запомни твердо и не забывай. Доказывать мы это не будем (смотри следующие уровни теории).

Единственное, что тебя может смущать в нашей формулировке - это слово «внутренних».

Зачем оно тут? А вот именно затем, чтобы подчеркнуть, что речь идёт об углах, которые внутри треугольника. А что, разве бывают ещё какие-то углы снаружи? Вот представь себе, бывают. У треугольника ещё бывают внешние углы . И самое главное следствие из того факта, что сумма внутренних углов треугольника равна, касается как раз внешнего треугольника. Так что давай выясним, что же такое этот внешний угол треугольника.

Смотри на картинку: берём треугольник и одну сторону (скажем) продолжаем.

Конечно, мы бы могли оставить сторону, а продолжить сторону. Вот так:

А вот про угол такого сказать ни в коем случае нельзя !

Так что не каждый угол снаружи треугольника имеет право называется внешним углом, а только тот, который образован одной стороной и продолжением другой стороны.

Так что же мы должны знать про внешний угол?

Смотри, на нашем рисунке это означает, что.

Как же это связано с суммой углов треугольника?

Давай разберёмся. Сумма внутренних углов равна

но - потому, что и - смежные.

Ну вот и получается: .

Видишь как просто?! Но очень важно . Так что запоминай:

Сумма внутренних углов треугольника равна, а внешний угол треугольника равен сумме двух внутренних, не смежных с ним.

2. Неравенство треугольника

Следующий факт касается не углов, а сторон треугольника.

Это означает, что

Ты уже догадался, почему этот факт называется неравенством треугольника?

Ну вот, а где же это неравенство треугольника может оказаться полезным?

А представь, что у тебя есть три друга: Коля, Петя и Сергей. И вот, Коля говорит: «От моего дома до Петиного м по прямой». А Петя: «От моего дома до дома Сергея метров по прямой». А Сергей: «Вам хорошо, а от моего дома до Колиного аж м по прямой». Ну, тут уже ты должен сказать: «Стоп, стоп! Кто - то из вас говорит неправду!»

Почему? Да потому что если от Коли до Пети м, а от Пети до Сергея м, то от Коли до Сергея точно должно быть меньше () метров - иначе и нарушается то самое неравенство треугольника. Ну и здравый смысл точно, естественно, нарушается: ведь всякому с детства неизвестно, что путь до прямой () должен быть короче, чем путь с заходом в точку. (). Так что неравенство треугольника просто отражает этот общеизвестный факт. Ну вот, ты теперь знаешь, как отвечать на такой, скажем, вопрос:

Бывает ли треугольник со сторонами?

Ты должен проверить, правда ли, что любые два числа из этих трёх в сумме больше третьего. Проверяем: , значит, треугольника со сторонами и не бывает! А вот со сторонами - бывает, потому что

3. Равенство треугольников

Ну вот, а если не один, а два или больше треугольников. Как проверишь, равны ли они? Вообще-то по определению:

Но…это ужасно неудобное определение! Как, скажите на милость, накладывать два треугольника хотя бы даже в тетради?! Но на наше счастье есть признаки равенства треугольников , которые позволяют действовать умом, не подвергая риску тетрадки.

Да и к тому же, отбросив легкомысленные шуточки, открою тебе секрет: для математика слово «наложить треугольники» означает вовсе не вырезать их и наложить, а сказать много - много - много слов, которые будет доказывать, что два треугольника совпадут при наложении. Так что ни в коем случае нельзя в работе писать «я проверил - треугольники совпадают при наложении» - тебе это не засчитают, и будут правы, потому что никто не гарантирует, что ты при наложении не ошибся, скажем, на четверть миллиметра.

Итак, какие-то математики сказали кучу слов, мы за ними эти слова повторять не будем (разве что в последнем уровне теории), а будем активно пользоваться тремя признаками равенства треугольников.

В обиходе (математическом) приняты такие укороченные формулировки - их легче запомнить и применять.

  1. Первый признак - по двум сторонам и углу между ними;
  2. Второй признак - по двум углам и прилежащей стороне;
  3. Третий признак - по трём сторонам.

ТРЕУГОЛЬНИК. КОРОТКО О ГЛАВНОМ

Треугольник — это геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой.

Основные понятия.

Основные свойства:

  1. Сумма внутренних углов любого треугольника равна, т.е.
  2. Внешний угол треугольника равен сумме двух внутренних, не смежных с ним, т.е.
    или
  3. Сумма длин любых двух сторон треугольника больше длины его третьей стороны, т.е.
  4. В треугольнике против большего угла лежит большая сторона, против большей стороны лежит больший угол, т.е.
    если, то, и наоборот,
    если, то.

Признаки равенства треугольников.

1. Первый признак - по двум сторонам и углу между ними.

2. Второй признак - по двум углам и прилежащей стороне.

3. Третий признак - по трём сторонам.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье - 299 руб.
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - 499 руб.

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Треугольники

Треугольником называется фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки -- его сторонами.

Виды треугольников

Треугольник называется равнобедренным, если у него две сторны равны. Эти равные стороны называются боковыми сторонами, а третья сторона называется основанием треугольника.

Треугольник, у которого все сторны равны, называется равносторонним или правильным.

Треугольник называется прямоугольным, если у него есть прямой угол, то есть угол в 90°. Сторона прямоугольного треугольника, противолежащая прямому углу, называется гипотенузой, две другие стороны называются катетами.

Треугольник называется остроугольным, если все три его угла - острые, то есть меньше 90°.

Треугольник называется тупоугольным, если один из его углов - тупой, то есть больше 90°.

Основные линии треугольника

Медиана

Медиана треугольника - это отрезок, соединяющий верщину треугольника с серединой противолежащей стороны этого треугольника.

Свойства медиан треугольника

    Медиана разбивает треугольник на два треугольника одинаковой площади.

    Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника.

    Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.

Биссектриса

Биссектриса угла - это луч, который исходит из его вершины, проходит между его сторонами и делит данный угол пополам. Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.

Свойства биссектрис треугольника

Высота

Высотой треугольника называется перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону этого треугольника.

Свойства высот треугольника

    В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.

    В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.

Срединный перпендикуляр

Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.

Свойства серединных перпендикуляров треугольника

    Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.

    Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника .

Средняя линия

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

Свойство средней линии треугольника

Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.

Формулы и соотношения

Признаки равенства треугольников

Два треугольника равны, если у них соответственно равны:

    две стороны и угол между ними;

    два угла и прилежащая к ним сторона;

    три стороны.

Признаки равенства прямоугольных треугольников

Два прямоугольных треугольника равны, если у них соответственно равны:

    гипотенуза и острый угол;

    катет и противолежащий угол;

    катет и прилежащий угол;

    два катета ;

    гипотенуза и катет .

Подобие треугольников

Два треугольника подобны, если выполняется одно из следующих условий, называемых признаками подобия:

    два угла одного треугольника равны двум углам другого треугольника;

    две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, образованные этими сторонами, равны;

    три стороны одного треугольника соответственно пропорциональны трем сторонам другого треугольника.

В подобных треугольниках соответствующие линии (высоты , медианы , биссектрисы и т. п.) пропорциональны.

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов, причем коэффициент пропорциональности равен диаметру описанной около треугольника окружности :

Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

a 2 = b 2 + c 2 - 2bc cos

Формулы площади треугольника

    Произвольный треугольник

a, b, c - стороны; - угол между сторонамиa и b ;- полупериметр;R - радиус описанной окружности; r - радиус вписанной окружности; S - площадь; h a - высота, проведенная к стороне a .



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме