Подпишись и читай
самые интересные
статьи первым!

Переход к стандартной форме злп.

На данном уроке мы вспомним основные определения данной темы и рассмотрим некоторые типовые задачи, а именно приведение многочлена к стандартному виду и вычисление численного значения при заданных значениях переменных. Мы решим несколько примеров, в которых будет применяться приведение к стандартному виду для решения разного рода задач.

Тема: Многочлены. Арифметические операции над одночленами

Урок: Приведение многочлена к стандартному виду. Типовые задачи

Напомним основное определение: многочлен - это сумма одночленов. Каждый одночлен, входящий в состав многочлена как слагаемое называется его членом. Например:

Двучлен;

Многочлен;

Двучлен;

Поскольку многочлен состоит из одночленов, то первое действие с многочленом следует отсюда - нужно привести все одночлены к стандартному виду. Напомним, что для этого нужно перемножить все численные множители - получить численный коэффициент, и перемножить соответствующие степени - получить буквенную часть. Кроме того, обратим внимание на теорему о произведении степеней: при умножении степеней показатели их складываются.

Рассмотрим важную операцию - приведение многочлена к стандартному виду. Пример:

Комментарий: чтобы привести многочлен к стандартному виду, нужно привести к стандартному виду все одночлены, входящие в его состав, после этого, если есть подобные одночлены - а это одночлены с одинаковой буквенной частью - выполнить действия с ними.

Итак, мы рассмотрели первую типовую задачу - приведение многочлена к стандартному виду.

Следующая типовая задача - вычисление конкретного значения многочлена при заданных численных значениях входящих в него переменных. Продолжим рассматривать предыдущий пример и зададим значения переменных:

Комментарий: напомним, что единица в любой натуральной степени равна единице, а ноль в любой натуральной степени равен нулю, кроме того, напомним, что при умножении любого числа на ноль получаем ноль.

Рассмотрим ряд примеров на типовые операции приведения многочлена к стандартному виду и вычисление его значения:

Пример 1 - привести к стандартному виду:

Комментарий: первое действие - приводим одночлены к стандартному виду, нужно привести первый, второй и шестой; второе действие - приводим подобные члены, то есть выполняем над ними заданные арифметические действия: первый складываем с пятым, второй с третьим, остальные переписываем без изменений, так как у них нет подобных.

Пример 2 - вычислить значение многочлена из примера 1 при заданных значениях переменных:

Комментарий: при вычислении следует вспомнить, что единица в любой натуральной степени это единица, при затруднении вычислений степеней двойки можно воспользоваться таблицей степеней.

Пример 3 - вместо звездочки поставить такой одночлен, чтобы результат не содержал переменной :

Комментарий: независимо от поставленной задачи, первое действие всегда одинаково - привести многочлен к стандартному виду. В нашем примере это действие сводится к приведению подобных членов. После этого следует еще раз внимательно прочитать условие и подумать, каким образом мы можем избавиться от одночлена . очевидно, что для этого нужно к нему прибавить такой же одночлен, но с противоположным знаком - . далее заменяем звездочку этим одночленом и убеждаемся в правильности нашего решения.

Многочленом называют сумму одночленов. Если все члены многочлена записать в стандартном виде (см. п. 51) и выполнить приведение подобных членов, то получится многочлен стандартного вида.

Всякое целое выражение можно преобразовать в многочлен стандартного вида - в этом состоит цель преобразований (упрощений) целых выражений.

Рассмотрим примеры, в которых целое выражение нужно привести к стандартному виду многочлена.

Решение. Сначала приведем к стандартному виду члены многочлена. Получим После приведения подобных членов получим многочлен стандартного вида

Решение. Если перед скобками стоит знак «плюс, то скобки можно опустить, сохранив знаки всех слагаемых, заключенных в скобки. Воспользовавшись этим правилом раскрытия скобок, получим:

Решение. Если перед скобками стоит зиак «минус», то скобки можно опустить, изменив знаки всех слагаемых» заключенных в скобки. Воспользовавшись этим правилом паскрытия скобок, получим:

Решение. Произведение одночлена и многочлена согласно распределительному закону равно сумме произведений этого одночлена и каждого члена многочлена. Получаем

Решение. Имеем

Решение. Имеем

Осталось привести подобные члены (они подчеркнуты). Получим:

53. Формулы сокращенного умножения.

В некоторых случаях приведение целого выражения к стандартному виду многочлена осуществляется с использованием тождеств:

Эти тождества называют формулами сокращенного умножения,

Рассмотрим примеры, в которых нужно преобразовать заданное выражение в миогочлеи стандартного вида.

Пример 1. .

Решение. Воспользовавшись формулой (1), получим:

Пример 2. .

Решение.

Пример 3. .

Решение. Воспользовавшись формулой (3), получим:

Пример 4.

Решение. Воспользовавшись формулой (4), получим:

54. Разложение многочленов на множители.

Иногда можно преобразовать многочлен в произведение нескольких сомножителей - многочленов или одпочленов. Такое тождественное преобразование называется разложением многочлена на множители. В этом случае говорят, что многочлен делится на каждый из этих множителей.

Рассмотрим некоторые способы разложения многочленов на множители,

1) Вынесение общего множителя за скобку. Это преобразование является непосредственным следствием распределительного закона (для наглядности нужно лишь переписать этот закон «справа налево»):

Пример 1. Разложить на множители многочлен

Решение. .

Обычно при вынесении общего множителя за скобки каждую переменную, входящую во все члены многочлена, выносят с наименьшим показателем, который она имеет в данном многочлене. Если все коэффициенты многочлена - целые числа, то в качестве коэффициента общего множителя берут наибольший по модулю общий делитель всех коэффициентов многочлена.

2) Использование формул сокращенного умножения. Формулы (1) - (7) из п. 53, будучи прочитанными «справа налево, во многих случаях оказываются полезными для разложения многочленов на множители.

Пример 2. Разложить на множители .

Решение. Имеем . Применив формулу (1) (разность квадратов), получим . Применив

теперь формулы (4) и (5) (сумма кубов, разность кубов), получим:

Пример 3. .

Решение. Сначала вынесем за скобку общий множитель. Для этого найдем наибольший общий делитель коэффициентов 4, 16, 16 и наименьшие показатели степеней, с которыми переменные а и b входят в составляющие данный многочлен одночлены. Получим:

3) Способ группировки. Он основан на том, что переместительный и сочетательный законы сложения позволяют группировать члены многочлена различными способами. Иногда удается такая группировка, что после вынесения за скобки общих множителей в каждой группе в скобках остается однн и тот же многочлен, который в свою очередь как общий множитель может быть вынесен за скобки. Рассмотрим примеры разложения многочлена на множители.

Пример 4. .

Решение. Произведем группировку следующим образом:

В первой группе вынесем за скобку общий множитель во второй - общий множитель 5. Получим Теперь многочлен как общий множитель вынесем за скобку: Таким образом, получаем:

Пример 5.

Решение. .

Пример 6.

Решение. Здесь никакая группировка не приведет к появлению во всех группах одного и того же многочлена. В таких случаях иногда оказывается полезным представить какой-либо член многочлена в виде некоторой суммы, после чего снова попробовать применить способ группировки. В нашем примере целесообразно представить в виде суммы Получим

Пример 7.

Решение. Прибавим и отнимем одночлен Получим

55. Многочлены от одной переменной.

Многочлен , где a, b - числа переменная, называется многочленом первой степени; многочлен где а, b, с - числа переменная, называется многочленом второй степени или квадратным трехчленом; многочлен где а, b, с, d - числа переменная называется многочленом третьей степени.

Вообще если о, переменная, то многочлен

называется лсмогочленол степени (относительно х); , m-члены многочлена, коэффициенты, старший член многочлена, а - коэффициент при старшем члене, свободный член многочлена. Обычно многочлен записывают по убывающим степеням переменной, т. е. степени переменной постепенно уменьшаются, в частности, на первом месте стоит старший член, на последнем - свободный член. Степень многочлена - это степень старшего члена.

Например, многочлен пятой степени, в котором старший член, 1 - свободный член многочлена.

Корнем многочлена называют такое значение при котором многочлен обращается в нуль. Например, число 2 является корнем многочлена так как

Понятие одночлена

Определение одночлена: одночлен - это алгебраическое выражение, в котором используется только умножение.

Стандартный вид одночлена

Что такое стандартный вид одночлена? Одночлен записан в стандартном виде, если в нём на первом месте стоит числовой множитель и этот множитель, его называют коэффициентом одночлена, только один в одночлене, буквы одночлена расположены в алфавитном порядке и каждая буква встречается только один раз.

Пример одночлена в стандартном виде:

здесь на первом месте число, коэффициент одночлена, и это число только одно в нашем одночлене, каждая буква встречается только один раз и буквы расположены в алфавитном порядке, в данном случае это латинский алфавит.

Ещё пример одночлена в стандартном виде:

каждая буква встречается лишь однажды, расположены они в латинском алфавитном порядке, но где коэффициент одночлена, т.е. числовой множитель, который должен стоять на первом месте? Он здесь равен единице: 1adm.

Коэффициент одночлена может быть отрицательным? Да, может, пример: -5a.

Коэффициент одночлена может быть дробным? Да, может, пример: 5,2a.

Если одночлен состоит только из числа, т.е. не имеет букв, как привести его к стандартному виду? Любой одночлен, представляющий собой число, уже находится в стандартном виде, пример: число 5 - это одночлен стандартного вида.

Приведение одночленов к стандартному виду

Как привести одночлен к стандартному виду? Рассмотрим примеры.

Пусть дан одночлен 2a4b, нужно привести его к стандартному виду. Перемножаем два его числовых множителя и получаем 8ab. Теперь одночлен записан в стандартном виде, т.е. имеет только один числовой множитель, записанный на первом месте, каждая бува в одночлене встречается только один раз и расположены эти буквы в алфавитном порядке. Итак, 2a4b = 8ab.

Дано: одночлен 2a4a, привести одночлен к стандартному виду. Перемножаем числа 2 и 4, произведение aa заменяем второй степенью a 2 . Получаем: 8a 2 . Это стандартный вид данного одночлена. Итак, 2a4a = 8a 2 .

Подобные одночлены

Что такое подобные одночлены? Если одночлены различаются только лишь коэффициентами или равны, то они называются подобными.

Пример подобных одночленов: 5a и 2a. Эти одночлены различаются только коэффициентами, значит они подобны.

Подобны ли одночлены 5abc и 10cba? Приведем к стандартному виду второй одночлен, получим 10abc. Теперь видно, что одночлены 5abc и 10abc отличаются только своими коэффициентами, а это означает, что они подобны.

Сложение одночленов

Чему равна сумма одночленов? Суммировать мы можем только подобные одночлены. Рассмотрим пример сложения одночленов. Чему равна сумма одночленов 5a и 2a? Суммой этих одночленов будет одночлен, подобный им, коэффициент которого равен сумме коэффициентов слагаемых. Итак, сумма одночленов равна 5a + 2a = 7a.

Ещё примеры сложения одночленов:

2a 2 + 3a 2 = 5a 2
2a 2 b 3 c 4 + 3a 2 b 3 c 4 = 5a 2 b 3 c 4

Ещё раз. Складывать можно только подобные одночлены, сложение сводится к сложению их коэффициентов.

Вычитание одночленов

Чему равна разность одночленов? Вычитать мы можем только подобные одночлены. Рассмотрим пример вычитания одночленов. Чему равна разность одночленов 5a и 2a? Разностью этих одночленов будет одночлен, подобный им, коэффициент которого равен разности коэффициентов данных одночленов. Итак, разность одночленов равна 5a - 2a = 3a.

Ещё примеры вычитания одночленов:

10a 2 - 3a 2 = 7a 2
5a 2 b 3 c 4 - 3a 2 b 3 c 4 = 2a 2 b 3 c 4

Умножение одночленов

Чему равно произведение одночленов? Рассмотрим пример:

т.е. произведение одночленов равно одночлену, множители которого составлены из множителей исходных одночленов.

Ещё пример:

2a 2 b 3 * a 5 b 9 = 2a 7 b 12 .

Как получился такой результат? В каждом сомножителе имеется «а» в степени: в первом - «а» в степени 2, а во втором - «а» в степени 5. Значит в произведении будет «а» в степени 7, ведь при умножении одинаковых букв показатели их степеней складываются:

A 2 * a 5 = a 7 .

Это же относится и к сомножителю «b».

Коэффициент первого сомножителя равен двум, а второго - одному, поэтому получаем в результате 2 * 1 = 2.

Вот так посчитался результат 2a 7 b 12 .

Из этих примеров видно, что коэффициенты одночленов перемножаются, а одинаковые буквы заменяются суммами их степеней в произведении.

Мы сказали, что имеют место как многочлены стандартного вида, так и не стандартного. Там же мы отметили, что можно любой многочлен привести к стандартному виду . В этой статье мы для начала выясним, какой смысл несет в себе эта фраза. Дальше перечислим шаги, позволяющие преобразовать любой многочлен в стандартный вид. Наконец, рассмотрим решения характерных примеров. Решения будем описывать очень подробно, чтобы разобраться со всеми нюансами, возникающими при приведении многочленов к стандартному виду.

Навигация по странице.

Что значит привести многочлен к стандартному виду?

Сначала нужно четко понимать, что понимают под приведением многочлена к стандартному виду. Разберемся с этим.

Многочлены, как и любые другие выражения, можно подвергать тождественным преобразованиям . В результате выполнения таких преобразований, получаются выражения, тождественно равные исходному выражению. Так выполнение определенных преобразований с многочленами не стандартного вида позволяют перейти к тождественно равным им многочленам, но записанным уже в стандартном виде. Такой переход и называют приведением многочлена к стандартному виду.

Итак, привести многочлен к стандартному виду – это значит заменить исходный многочлен тождественно равным ему многочленом стандартного вида, полученным из исходного путем проведения тождественных преобразований.

Как привести многочлен к стандартному виду?

Давайте поразмыслим, какие преобразования нам помогут привести многочлен к стандартному виду. Будем отталкиваться от определения многочлена стандартного вида.

По определению каждый член многочлена стандартного вида является одночленом стандартного вида , и многочлен стандартного вида не содержит подобных членов. В свою очередь многочлены, записанные в виде, отличном от стандартного, могут состоять из одночленов в не стандартном виде и могут содержать подобные члены. Отсюда логически вытекает следующее правило, объясняющее как привести многочлен к стандартному виду :

  • сначала нужно привести к стандартному виду одночлены, из которых состоит исходный многочлен,
  • после чего выполнить приведение подобных членов.

В итоге будет получен многочлен стандартного вида, так как все его члены будут записаны в стандартном виде, и он не будет содержать подобных членов.

Примеры, решения

Рассмотрим примеры приведения многочленов к стандартному виду. При решении будем выполнять шаги, продиктованные правилом из предыдущего пункта.

Здесь заметим, что иногда все члены многочлена сразу записаны в стандартном виде, в этом случае достаточно лишь привести подобные члены. Иногда после приведения членов многочлена к стандартному виду не оказывается подобных членов, следовательно, этап приведения подобных членов в этом случае опускается. В общем случае приходится делать и то и другое.

Пример.

Представьте многочлены в стандартном виде: 5·x 2 ·y+2·y 3 −x·y+1 , 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 и .

Решение.

Все члены многочлена 5·x 2 ·y+2·y 3 −x·y+1 записаны в стандартном виде, подобных членов он не имеет, следовательно, этот многочлен уже представлен в стандартном виде.

Переходим к следующему многочлену 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 . Его вид не является стандартным, о чем свидетельствуют члены 2·a 3 ·0,6 и −b·a·b 4 ·b 5 не стандартного вида. Представим его в стандартном виде.

На первом этапе приведения исходного многочлена к стандартному виду нам нужно представить в стандартном виде все его члены. Поэтому, приводим к стандартному виду одночлен 2·a 3 ·0,6 , имеем 2·a 3 ·0,6=1,2·a 3 , после чего – одночлен −b·a·b 4 ·b 5 , имеем −b·a·b 4 ·b 5 =−a·b 1+4+5 =−a·b 10 . Таким образом, . В полученном многочлене все члены записаны в стандартном виде, более того очевидно, что в нем нет подобных членов. Следовательно, на этом завершено приведение исходного многочлена к стандартному виду.

Осталось представить в стандартном виде последний из заданных многочленов . После приведения всех его членов к стандартному виду он запишется как . В нем есть подобные члены, поэтому нужно провести приведение подобных членов :

Так исходный многочлен принял стандартный вид −x·y+1 .

Ответ:

5·x 2 ·y+2·y 3 −x·y+1 – уже в стандартном виде, 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 =0,8+1,2·a 3 −a·b 10 , .

Зачастую приведение многочлена к стандартному виду является лишь промежуточным этапом при ответе на поставленный вопрос задачи. Например, нахождение степени многочлена предполагает его предварительное представление в стандартном виде.

Пример.

Приведите многочлен к стандартному виду, укажите его степень и расположите члены по убывающим степеням переменной.

Решение.

Сначала приводим все члены многочлена к стандартному виду: .

Теперь приводим подобные члены:

Так мы привели исходный многочлен к стандартному виду, это нам позволяет определить степень многочлена , которая равна наибольшей степени входящих в него одночленов. Очевидно, она равна 5.

Осталось расположить члены многочлена по убывающим степеням переменных. Для этого нужно лишь переставить местами члены в полученном многочлене стандартного вида, учитывая требование. Наибольшую степень имеет член z 5 , степени членов , −0,5·z 2 и 11 равны соответственно 3 , 2 и 0 . Поэтому многочлен с расположенными по убывающим степеням переменной членами будет иметь вид .

Ответ:

Степень многочлена равна 5 , а после расположения его членов по убывающим степеням переменной он принимает вид .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с. : ил. - ISBN 978-5-09-022771-1.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Любая десятичная дробь может быть записана в виде a ,bc ... · 10 k . Такие записи часто встречается в научных расчетах. Считается, что работать с ними еще удобнее, чем с обычной десятичной записью.

Сегодня мы научимся приводить к такому виду любую десятичную дробь. Заодно убедимся, что подобная запись - это уже «перебор», и никаких преимуществ в большинстве случаев она не дает.

Для начала - небольшое повторение. Как известно, десятичные дроби можно умножать не только между собой, но и на обычные целые числа (см. урок « »). Особый интерес представляет умножение на степени десятки. Взгляните:

Задача. Найдите значение выражения: 25,81 · 10; 0,00005 · 1000; 8,0034 · 100.

Умножение выполняется по стандартной схеме, с выделением значащей части у каждого множителя. Кратко опишем эти шаги:

Для первого выражения: 25,81 · 10.

  1. Значащие части: 25,81 → 2581 (сдвиг вправо на 2 цифры); 10 → 1 (сдвиг влево на 1 цифру);
  2. Умножаем: 2581 · 1 = 2581;
  3. Суммарный сдвиг: вправо на 2 − 1 = 1 цифру. Выполняем обратный сдвиг: 2581 → 258,1.

Для второго выражения: 0,00005 · 1000.

  1. Значащие части: 0,00005 → 5 (сдвиг вправо на 5 цифр); 1000 → 1 (сдвиг влево на 3 цифры);
  2. Умножаем: 5 · 1 = 5;
  3. Суммарный сдвиг: вправо на 5 − 3 = 2 цифры. Выполняем обратный сдвиг: 5 → ,05 = 0,05.

Последнее выражение: 8,0034 · 100.

  1. Значащие части: 8,0034 → 80 034 (сдвиг вправо на 4 цифры); 100 → 1 (сдвиг влево на 2 цифры);
  2. Умножаем: 80 034 · 1 = 80 034;
  3. Суммарный сдвиг: вправо на 4 − 2 = 2 цифры. Выполняем обратный сдвиг: 80 034 → 800,34.

Давайте немного перепишем исходные примеры и сравним их с ответами:

  1. 25,81 · 10 1 = 258,1;
  2. 0,00005 · 10 3 = 0,05;
  3. 8,0034 · 10 2 = 800,34.

Что происходит? Оказывается, умножение десятичной дроби на число 10 k (где k > 0) равносильно сдвигу десятичной точки вправо на k разрядов. Именно вправо - ведь число увеличивается.

Аналогично, умножение на 10 −k (где k > 0) равносильно делению на 10 k , т.е. сдвигу на k разрядов влево, что приводит к уменьшению числа. Взгляните на примеры:

Задача. Найдите значение выражения: 2,73 · 10; 25,008: 10; 1,447: 100;

Во всех выражениях второе число - степень десятки, поэтому имеем:

  1. 2,73 · 10 = 2,73 · 10 1 = 27,3;
  2. 25,008: 10 = 25,008: 10 1 = 25,008 · 10 −1 = 2,5008;
  3. 1,447: 100 = 1,447: 10 2 = 1,447 · 10 −2 = ,01447 = 0,01447.

Отсюда следует, что одну и ту же десятичную дробь можно записать бесконечным числом способов. Например: 137,25 = 13,725 · 10 1 = 1,3725 · 10 2 = 0,13725 · 10 3 = ...

Стандартный вид числа - это выражения вида a ,bc ... · 10 k , где a , b , c , ... - обычные цифры, причем a ≠ 0. Число k - целое.

  1. 8,25 · 10 4 = 82 500;
  2. 3,6 · 10 −2 = 0,036;
  3. 1,075 · 10 6 = 1 075 000;
  4. 9,8 · 10 −6 = 0,0000098.

Для каждого числа, записанного в стандартном виде, рядом указана соответствующая десятичная дробь.

Переход к стандартному виду

Алгоритм перехода от обычной десятичной дроби к стандартному виду очень прост. Но перед тем как его использовать, обязательно повторите, что такое значащая часть числа (см. урок «Умножение и деление десятичных дробей »). Итак, алгоритм:

  1. Выписать значащую часть исходного числа и поставить после первой значащей цифры десятичную точку;
  2. Найти образовавшийся сдвиг, т.е. на сколько разрядов сместилась десятичная точка по сравнению с исходной дробью. Пусть это будет число k ;
  3. Сравнить значащую часть, которую мы выписали на первом шаге, с исходным числом. Если значащая часть (с учетом десятичной точки) меньше исходного числа, дописать множитель 10 k . Если больше - дописать множитель 10 −k . Это выражение и будет стандартным видом.

Задача. Запишите число в стандартном виде:

  1. 9280;
  2. 125,05;
  3. 0,0081;
  4. 17 000 000;
  5. 1,00005.
  1. 9280 → 9,28. Сдвиг десятичной точки на 3 разряда влево, число уменьшилось (очевидно, 9,28 < 9280). Результат: 9,28 · 10 3 ;
  2. 125,05 → 1,2505. Сдвиг - на 2 разряда влево, число уменьшилось (1,2505 < 125,05). Результат: 1,2505 · 10 2 ;
  3. 0,0081 → 8,1. В этот раз сдвиг произошел вправо на 3 разряда, поэтому число увеличилось (8,1 > 0,0081). Результат: 8,1 · 10 −3 ;
  4. 17000000 → 1,7. Сдвиг - на 7 разрядов влево, число уменьшилось. Результат: 1,7 · 10 7 ;
  5. 1,00005 → 1,00005. Сдвига нет, поэтому k = 0. Результат: 1,00005 · 10 0 (бывает и такое!).

Как видите, в стандартном виде представляются не только десятичные дроби, но и обычные целые числа. Например: 812 000 = 8,12 · 10 5 ; 6 500 000 = 6,5 · 10 6 .

Когда применять стандартную запись

По идее, стандартная запись числа должна сделать дробные вычисления еще проще. Но на практике заметный выигрыш получается только при выполнении операции сравнения. Потому что сравнение чисел, записанных в стандартном виде, выполняется так:

  1. Сравнить степени десятки. Наибольшим будет то число, у которого эта степень больше;
  2. Если степени одинаковые, начинаем сравнивать значащие цифры - как в обычных десятичных дробях. Сравнение идет слева направо, от старшего разряда к младшему. Наибольшим будет то число, в котором очередной разряд окажется больше;
  3. Если степени десятки равны, а все разряды совпадают, то сами дроби тоже равны.

Разумеется, все это верно только для положительных чисел. Для отрицательных чисел все знаки меняются на противоположные.

Замечательно свойство дробей, записанных в стандартном виде, заключается в том, что к их значащей части можно приписывать любое количество нулей - как слева, так и справа. Аналогичное правило существует для других десятичных дробей (см. урок «Десятичные дроби »), но там есть свои ограничения.

Задача. Сравните числа:

  1. 8,0382 · 10 6 и 1,099 · 10 25 ;
  2. 1,76 · 10 3 и 2,5 · 10 −4 ;
  3. 2,215 · 10 11 и 2,64 · 10 11 ;
  4. −1,3975 · 10 3 и −3,28 · 10 4 ;
  5. −1,0015 · 10 −8 и −1,001498 · 10 −8 .
  1. 8,0382 · 10 6 и 1,099 · 10 25 . Оба числа положительные, причем у первого степень десятки меньше, чем у второго (6 < 25). Значит, 8,0382 · 10 6 < 1,099 · 10 25 ;
  2. 1,76 · 10 3 и 2,5 · 10 −4 . Числа снова положительные, причем степень десятки у первого из них больше, чем у второго (3 > −4). Следовательно, 1,76 · 10 3 > 2,5 · 10 −4 ;
  3. 2,215 · 10 11 и 2,64 · 10 11 . Числа положительные, степени десятки совпадают. Смотрим на значащую часть: первые цифры тоже совпадают (2 = 2). Различие начинается на второй цифре: 2 < 6, поэтому 2,215 · 10 11 < 2,64 · 10 11 ;
  4. −1,3975 · 10 3 и −3,28 · 10 4 . Это отрицательные числа. У первого степень десятки меньше (3 < 4), поэтому (в силу отрицательности) само число будет больше: −1,3975 · 10 3 > −3,28 · 10 4 ;
  5. −1,0015 · 10 −8 и −1,001498 · 10 −8 . Снова отрицательные числа, причем степени десятки совпадают. Также совпадают и первые 4 разряда значащей части (1001 = 1001). На 5 разряде начинается отличие, а именно: 5 > 4. Поскольку исходные числа отрицательные, заключаем: −1,0015 · 10 −8 < −1,001498 · 10 −8 .


Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме