Подпишись и читай
самые интересные
статьи первым!

Возникновение астрономии. Краткая история развития астрономии

История астрономии начинается из самых ранних времен. Первые зарегистрированные астрономические достижения относятся к XXXI веку до н. э. В начале целью, астрономии как науки считалось описание движения небесных тел в небе. Таким образом, были задействованы только Солнце, Луна, звезды и некоторые планеты. В древние времена было четкое разделение астрономии на два направления. Первый сосредоточился на возможностях воздействия астрономии на повседневную жизнь жителей Земли, тогда как второе направление было чисто теоретическим. Оно сосредоточилось на построении математических моделей, описывающих движения небесных тел и позволяющих предсказать их позиции в будущем.

Астрономия развивалась независимо в Древней Греции, Египте и в Месопотамии. И уже в 3000 году до нашей эры был создан календарь, который делит год на 365 дней. Тогда впервые началось разделение дня на двенадцать частей. В то время были придуманы первые имена созвездий, шумерами жившим в древней Месопотамии. Некоторые из этих имен используются и по сей день. Речь идет о созвездиях Тельца, Льва и Скорпиона.

На рубеже восемнадцатого и семнадцатого веков до нашей эры были созданы астрономические вавилонские тексты. Одна из работ, полностью была посвящена планете Венера. Ее название: «Enuma Anu Enlil».

В пятом веке до нашей эры вавилонская астрономия ввела зодиака. Эта концепция касалась как совокупности созвездий, так и называемого большого круга, ставшего основой системы координат в небе. Вавилонские астрономы также создали первые математические модели, из которых можно было рассчитать даты возникновения астрономических явлений.

В Древней Греции астрономы научились использовать геометрию для описания явлений в небе. Развитие греческой астрономии относится к шестому столетию до нашей эры. В то время было создано много теоретических космологических моделей. Астрономы пытались объяснить, например, природу света или небесных тел. Во главе этой школы были в основном Анаксимандр и Пифагор. Говорят, что Пифагор первый, предположил, что Земля может иметь форму сферы.

На рубеже пятого и четвертого веков до н. э. жил Платон, который предположил, что движения тел в небе круговое и однообразное. Он также передал свои знания и предположения своим ученикам. Одним из них был Евдоксос из Книдоса ставшим автором модели Вселенной, которая предполагает, что она состоит из системы сфер с общей средой, и они движутся вокруг Земли.

Эта модель несколько лет спустя была слегка расширена Каллиппсом Кизикский. Он увеличил количество сфер с 26 до 35. Аристотель также работал над этой моделью, но он предполагал, что в итоге сфер должно быть 55.

Однако это была чисто теоретическая модель. В последующие годы греческая астрономия шла в направлении объединения таких теоретических предположений с данными наблюдений. В третьем веке до нашей эры, Аполоний Перги, построил две геометрические модели планетарных орбит. Первая из них предположила, что планеты движутся вокруг Земли по кругу с постоянной скоростью, но Земля не находится в центре этого круга. Это должно было объяснить изменением расстояния между Землей и остальными планетами. Вторая модель предполагала движение планет и называлась эпициклом.

Предположения первой из моделей были использованы во втором веке до нашей эры Гиппархом. Он попытался описать движение Солнца вокруг Земли. Он даже установил параметры для предполагаемой солнечной орбиты в зависимости от продолжительности весны и лета. Гиппарх также использовал вторую модель Аполлония.

Наука затем вступила в новую эру, где наибольшее влияние на ее развитие сделали в первую очередь исламские астрономы, а также отдельные ученые в Европе. Венцом этих многовековой теории была работа Коперника.

В XI веке арабские астрономические работы стали все более популярными в Западной Европе. Таким образом, теории Птолемея, переведенные ранее на арабский язык, попали в Западную Европу. В тринадцатом веке на основе предположений Птолемея были созданы новые астрономические таблицы для расчета положений планет.

В 1543 году Коперник опубликовал в Нюрнберге свою работу «О вращении небесных сфер». Во второй половине XVI века астроном Тихо Браге, благодаря своим наблюдениям обнаружил, что комета двигалась в области, которая, согласно модели Птолемея, была зарезервирована для движения планет. Таким образом, он опроверг теорию существования сфер. В последние годы своей жизни Браге сотрудничал с Кеплером, который помог ему разработать его теорию. Потом благодаря этим данным, полученным Браге, Кеплер обнаружил, какова природа планетных орбит.

Разделы астрономии

Задачи астрономии

Предмет и задачи астрономии, классификация разделов астрономии.

Астрономия - наука о Вселенной, изучающая движение, строение, происхождение и развитие небесных тел и их систем.

Слово «астрономия» происходит от двух греческих: «астрон» - звезда и «номос» - закон.

Астрономия решает следующие задачи:

1. Установление систем небесных координат и систем измерения времени;

2.Изучение видимых и действительных положений небесных тел в пространстве;

3. Определение их размеров и форм;

4.Определение координат точек земной поверхности или других небесных тел;

5. Изучение физического строения небесных тел, исследование химического состава и физических условий (плотности, температуры и т.п.) на поверхности и в недрах небесных тел;

6. Решение проблем происхождения и развития небесных тел, их систем, а также Вселенной.

В соответствии с решаемыми задачами современная астрономия подразделяется на следующие основные разделы:

1. Астрометрия - наука об измерении пространства и времени, она подразделяется на:

а) сферическую астрономию (разрабатывает математические методы определения видимых положений и движений небесных тел с помощью различных систем координат и систем измерения времени);

б) фундаментальную астрометрию (определение координат небесных тел, составление каталогов звёздных положений и определением значений астрономических постоянных);

в) практическую астрономию (рассматривает методы определения географических координат, азимутов направлений, точного времени и теорию применяемых инструментов).

2. Теоретическая астрономия (разрабатывает методы определения орбит);

3. Небесная механика (изучает законы движения небесных тел);

4. Астрофизика -изучает строение, физические свойства и химический состава небесных тел;

5. Звёздная астрономия – изучает закономерности пространственного распределения и движения звёзд, звёздных систем и межзвёздной материи;

6. Космогония – изучает вопросы происхождения и развития небесных тел, в том числе и Земли.

7. Космология - рассматривает общие закономерности строения и развития Вселенной.

Астрономия- древнейшая из наук. Археологами установлено, что человек владел начальными астрономическими знаниями уже 20 тыс. лет назад в эпоху каменного века.

Развитие астрономии происходило по мере накопления данных наблюдений, их систематизации.

Астрономия особенно бурно развивалась в те эпохи, когда в обществе возникала острая практическая потребность в её результатах (предсказание наступление сезонов года, времяисчисление, ориентировка на суше и море и т.п.



Доисторический этап ¾ »от 25 тыс.лет до н.э.- до 4 тыс. до н.э.(наскальные рисунки, природные обсерватории и т.д.).

¾ около 4.тыс. лет до н.э. астрономические памятники древних майя, каменная обсерватория Стоунхендж (Англия);

¾ около 3000 лет до н.э. ориентировка пирамид, первые астрономические записи в Египте (рис. 1.1), Вавилоне, Китае;

¾ около 2500лет до н.э. установление египетского солнечного календаря;

¾ около 2000 лет до н.э. создание 1-ой карты неба (Китай);

¾ около 1100 лет до н.э. определение наклона эклиптики к экватору;

Античный этап ¾ идеи о шарообразности Земли (Пифагор, 535 г. до н.э.);

¾ предсказание Фалесом Милетским солнечного затмения (585 г. до н.э.).

¾ установление 19-летнего цикла лунных фаз (цикл Метона, 433 г. до н.э);

¾ идеи о вращении Земли вокруг оси (Гераклит Понтийский, 4 век до н.э);

¾ идея концентрических кругов (Евдокс), трактат «О Небе» Аристотель (доказательство шарообразности Земли и планет) составление первого каталога звёзд 800 звёзд, Китай (4 век до н.э.);

¾ начало систематических определений положений звёзд греческими астрономами, развитие теории системы мира (3 век до н.э.) (рис.1.2);

¾ идея о движении Земли вокруг Солнца и определение размеров Земли (Аристарх Самосский, Эратосфен 3-2 в. до н.э.);

¾ открытие прецессии, первые таблицы движения Солнца и Луны, звездный каталог 850 звезд (Гиппарах, (2 Век до н.э);

¾ введение в римской империи Юлианского календаря (46 г. до н.э);

¾ Клавдий Птолемей – «Синтаксис»(Альмогест)-энциклопедия античной астрономии, теория движения, планетные таблицы (140 г. н.э).

Арабский период. После падения античных государств в Европе античные научные традиции (в том числе и астрономии) продолжили развитие в арабском халифате, а также в Индии и Китае:

¾ 813г. Основание в Багдаде астрономической школы (дом мудрости);

¾ 827г. определение размеров земного шара по градусным измерениям между Тигром и Евфратом;

¾ 829г. основание Багдадской обсерватории;

¾Х в. открытие лунного неравенства (Абу-ль-Вафа, Багдад);

¾ каталог 1029 звёзд, уточнение наклона эклиптики к экватору, определение длинны 1° меридиана (1031г, Ал-Бируни);

¾ многочисленные работы по астрономии до конца 15 века (календарь Омара Хайяма, «Ильханские таблицы» движения Солнца и планет(Насирэддин Тусси, Азербайджан), работы Улугбека).

Европейское возрождение. В конце 15 века начинается возрождение астрономических знания в Европе, которое привело к первой революции в астрономии. Эта революция в астрономии была вызвана требованиями практики – начиналась эпоха великих географических открытий. Дальние плавания требовали точных методов определения координат. Система Птолемея не могла обеспечить возросших потребностей. Страны, которые первыми обратили внимание на развитие астрономических исследований, добивались наибольших успехов в открытии и освоении новых земель. Так в Португалии, еще в 14 веке принц Генрих основал обсерваторию для обеспечения потребностей мореплавания, и хотя он не принимал участия в плаваниях, в истории он известен под именем Генрих- Мореплаватель, а Португалия первая из Европейских стран начала захват и эксплуатацию новых территорий.

Важнейшие достижения европейской астрономии XV ¾ XVI веков это планетные таблицы (Региомонтан из Нюрнберга, 1474г.), работы Н.Коперника, которые произвели первую революцию в Астрономии (1515-1540 гг.), а также наблюдения датского астронома Тихо Браге в обсерватории Ураниборг на острове Вэн (самые точные в дотелескопическую эпоху). В 1609- 1618 гг. Кеплер на основе этих наблюдений планеты Марс открыл три закона движения планет, а в 1687г. Ньютон опубликовал закон всемирного тяготения , объясняющий причины движения планет.

В начале 17 века (Липперсгей, Галилей, 1608 г) был создан оптический телескоп, многократно раздвинувший горизонт познания человечества о мире. Соединение достижений теории и практики позволило в свою очередь сделать ряд замечательных открытий: определяется параллакс Солнца (1671), что позволило с высокой точностью определить астрономическую единицу и определить скорость света, открываются тонкие движения оси Земли, собственные движения звёзд, законы движения Луны, создаётся небесная механика, определяются массы планет.

В начале ХIХ века (1.01.1801г.) Пиацци открывает первую малую планету (астероид) Цереру, а затем в 1802 и в 1804 годах были открыты Паллада и Юнона.

В 1806 ¾ 1817 гг И.Фраунтгофер (Германия) создаёт основы спектрального анализа, измеряет длинны волн солнечного спектра и линий поглощения, заложив таким образом основы астрофизики.

В 1845 г. И.Физо и Ж.Фуко (Франция) получили первые фотографии Солнца. В 1845 ¾ 1850 гг лорд Росс (Ирландия) открыл спиральную структуру некоторых туманностей, а в 1846 г. И.Галле (Германия) по вычислениям У.Леверье (Франция) открыл планету Нептун, что явилось триумфом небесной механики. Развитие науки в ХIХ-ом веке (прежде всего физики и химии), появление новых технологий дал толчок к развитию астрофизики. Внедрение в астрономию фотографии позволило получить фотоснимки солнечной короны и поверхности Луны, начать исследования спектров звёзд, туманностей, планет. Прогресс в оптике и телескопостроении позволил открыть спутники Марса, описать поверхность Марса по наблюдениям его в противостоянии (Д. Скиапарелли), а повышение точности астрометрических наблюдений позволило измерить годичный параллакс звёзд (Струве, Бессель, 1838г) открыть движение земных полюсов.

Астрономия ХХ века. В начале ХХ века К.Э.Циолковский издаёт первое научное сочинение по космонавтике ¾ «Исследование мировых пространств реактивными приборами».

В 1905 г. А.Эйнштейн создаёт специальную теорию относительности , а в 1907 ¾ 1916 годах общую теорию относительности , что позволило объяснить имеющиеся противоречия между существовавшей физической теорией и практикой, дало импульс для разгадки тайны энергии звёзд, стимулировало развитие космологических теорий («нестационарная вселенная» А.А.Фридман, РСФСР). В 1923 г Э.Хаббл доказал существование других звёздных систем ¾ галактик , а в 1929 г. он же открыл закон «красного смещения» в спектрах галактик.

Дальнейшее развитие астрономии в ХХ веке шло как по пути увеличения мощности оптических телескопов (в 1918 г. установлен 2,5 – метровый рефлектор в обсерватории Маунт-Вилсон, а в 1947 г.там же вступил в строй 5-и метровый рефлектор) так и по освоению других участков спектра электромагнитных волн.

Радиоастрономия возникла в 30-х годах 20-го века вместе с появлением первых радиотелескопов. В 1933 Карл Янский из Bell Labs обнаружил радиоволны, идущие из центра галактики. Вдохновившись его работами Гроут Ребер в 1937 году сконструировал первый параболический радиотелескоп.

В 1948 г. запуски ракет в высокие слои атмосферы (США) позволили обнаружить рентгеновское излучение солнечной короны. Эти методы дали возможность астрономам начать изучение физической природы небесных тел и значительно расширить границы исследуемого пространства. Астрофизика стала ведущим разделом астрономии, она получила особенно большое развитие в XX в. и продолжающая бурно развиваться в наши дни.

В 1957 г. было положено начало качественно новым методам исследований, основанным на использовании искусственных небесных тел, что в дальнейшем привело к возникновению новых разделов астрофизики. В 1957 в СССР запущен первый искусственный спутник Земли, что ознаменовало начало космической эры для человечества. Космические аппараты позволили выводить за пределы земной атмосферы инфракрасные, рентгеновские и гамма-телескопы). Первые полеты человека в космос (1961 г., СССР), первая высадка людей на Луну (1969 г., США), - эпохальные события для всего человечества. За ними последовали доставка на Землю лунного грунта (Луна-16, СССР, 1970 г.), посадка спускаемых аппаратов на поверхности Венеры и Марса, посылка автоматических межпланетных станций к более далеким планетам Солнечной системы.

Освоение астрономией широкого спектра электромагнитных волн позволило человечеству многократно увеличить свои знания о Вселенной. В тоже время новые возможности поставили перед наукой новые задачи - темная материя, тёмная энергия ждут рационального объяснения.

Более подробно о наиболее важных достижениях современной астрономии рассказано в соответствующих разделах курса лекций.

Астрономия - наиболее древняя среди естественных наук. Она была высоко развита вавилонянами и греками - гораздо больше, нежели физика, химия и техника.

В древности и средние века не одно только чисто научное любопытство побуждало производить вычисления, копирование, исправления астрономических таблиц, но прежде всего тот факт, что они были необходимы для астрологии.

Вкладывая большие суммы в построение обсерваторий и точных инструментов, власть имущие ожидали отдачи не только в виде славы покровителей науки, но также в виде астрологических предсказаний. Сохранилось лишь очень небольшое число книг тех времен, свидетельствующих о чисто теоретическом интересе учёных к астрономии. Большинство книг не содержит ни наблюдений, ни теории, а лишь таблицы и правила их использования.

Одно из немногих исключений - "Альмагест" Птолемея, написавшего, однако, также и астрологическое руководство "Тетрабиблос".

Первые записи астрономических наблюдений, подлинность которых несомненна, относятся к VIII в. до н.э. Однако известно, что еще за 3 тысячи лет до н. э. египетские жрецы подметили, что разливы Нила, регулировавшие экономическую жизнь страны, наступали вскоре после того, как перед восходом Солнца на востоке появлялась самая яркая из звезд, Сириус, скрывавшаяся до этого около двух месяцев в лучах Солнца. Из этих наблюдений египетские жрецы довольно точно определили продолжительность тропического года.

В Древнем Китае за 2 тысячи лет до н.э. видимые движения Солнца и Луны были настолько хорошо изучены, что китайские астрономы могли предсказывать наступление солнечных и лунных затмений. Астрономия, как и все другие науки, возникла из практических потребностей человека. Кочевым племенам первобытного общества нужно было ориентироваться при своих странствиях, и они научились это делать по Солнцу, Луне и звездам. Первобытный земледелец должен был при полевых работах учитывать наступление различных сезонов года, и он заметил, что смена времен года связана с полуденной высотой Солнца, с появлением па ночном небе определенных звезд. Дальнейшее развитие человеческого общества вызвало потребность в измерении времени и в летосчислении (составлении календарей).

Все это могли дать и давали наблюдения над движением небесных светил, которые велись в начале без всяких инструментов, были не очень точными, но вполне удовлетворяли практические нужды того времени. Из таких наблюдений и возникла паука о небесных телах - астрономия.

С развитием человеческого общества перед астрономией выдвигались все новые и новые задачи, для решения которых нужны были более совершенные способы наблюдений и более точные методы расчетов. Постепенно стали создаваться простейшие астрономические инструменты и разрабатываться математические методы обработки наблюдений.

В Древней Греции астрономия была уже одной из наиболее развитых наук. Для объяснения видимых движений планет греческие астрономы, крупнейший из них Гиппарх (II в. до н.э.), создали геометрическую теорию эпициклов, которая легла в основу геоцентрической системы мира Птолемея (II в. н.э.). Будучи принципиально неверной, система Птолемея тем не менее позволяла предвычислять приближенные положения планет на небе и потому удовлетворяла, до известной степени, практическим запросам в течение нескольких веков.

Системой мира Птолемея завершается этап развития древнегреческой астрономии. Развитие феодализма и распространение христианской религии повлекли за собой значительный упадок естественных наук, и развитие астрономии в Европе затормозилось на многие столетия. В эпоху мрачного средневековья астрономы занимались лишь наблюдениями видимых движений планет и согласованием этих наблюдений с принятой геоцентрической системой Птолемея.

Рациональное развитие в этот период астрономия получила лишь у арабов и народов Средней Азии и Кавказа, в трудах выдающихся астрономов того времени - Аль-Баттани (850-929 гг.), Бируни (973-1048 гг.), Улугбека (1394-1449 гг.) и др. В период возникновения и становления капитализма в Европе, который пришел на смену феодальному обществу, началось дальнейшее развитие астрономии. Особенно быстро она развивалась в эпоху великих географических открытий (XV-XVI вв.). Нарождавшийся новый класс буржуазии был заинтересован в эксплуатации новых земель и снаряжал многочисленные экспедиции для их открытия. Но далекие путешествия через океан требовали более точных и более простых методов ориентировки и исчисления времени, чем те, которые могла обеспечить система Птолемея. Развитие торговли и мореплавания настоятельно требовало совершенствования астрономических знаний и, в частности, теории движения планет. Развитие производительных сил и требования практики, с одной стороны, и накопленный наблюдательный материал, - с другой, подготовили почву для революции в астрономии, которую и произвел великий польский ученый Николай Коперник (1473-1543), разработавший свою гелиоцентрическую систему мира, опубликованную в год его смерти.

Учение Коперника явилось началом нового этапа в развитии астрономии. Кеплером в 1609-1618 гг. были открыты законы движений планет, а в 1687 г. Ньютон опубликовал закон всемирного тяготения.

Новая астрономия получила возможность изучать не только видимые, но и действительные движения небесных тел. Ее многочисленные и блестящие успехи в этой области увенчались в середине XIX в. открытием планеты Нептун, а в наше время - расчетом орбит искусственных небесных тел.

Следующий, очень важный этап в развитии астрономии начался сравнительно недавно, с середины XIX в., когда возник спектральный анализ и стала применяться фотография в астрономии. Эти методы дали возможность астрономам начать изучение физической природы небесных тел и значительно расширить границы исследуемого пространства. Возникла астрофизика, получившая особенно большое развитие в XX в. и продолжающая бурно развиваться в наши дни. В 40-х гг. XX в. стала развиваться радиоастрономия, а в 1957 г. было положено начало качественно новым методам исследований, основанным на использовании искусственных небесных тел, что в дальнейшем привело к возникновению фактически нового раздела астрофизики - рентгеновской астрономии.

2000 лет тому назад расстояние Земли от Солнца, согласно Аристарху Самосскому, составляло около 361 радиуса Земли, т.е. около 2.300.000 км. Аристотель считал, что "сфера звезд” размещается в 9 раз дальше. Таким образом, геометрические масштабы мира 2000 лет тому назад "измерялись” величиной в 20.000.000 км.

При помощи современных телескопов астрономы наблюдают объекты, находящиеся на расстоянии около 10 млрд. световых лет, что составляет 9,5-1022 км. Таким образом, за упомянутый промежуток времени масштабы мира "выросли” в 5-1015 раз.

Согласно византийским христианским богословам (середина IV столетия н.э.) мир был создан 5508 лет до н.э., т.е. менее чем 7,5 тыс. лет тому назад.

Современная астрономия дала доказательства того, что уже около 10 млрд. лет тому назад доступная для астрономических наблюдений Вселенная существовала в виде гигантской системы галактик. Масштабы во времени "выросли” в 13 млн. раз.

Но главное, конечно, не в цифровом росте пространственных и временных масштабов, хотя и от них захватывает дыхание. Главное в том, что человек, наконец, вышел на широкий путь понимания действительных законов мироздания.

Астрономия изучает строение, движение, происхождение и развитие небесных тел, их систем и всей Вселенной в целом. Другими словами, астрономия изучает изучает строение и эволюцию Вселенной.

Важными задачами астрономии являются объяснение и прогнозиро-
вание астрономических явлений, таких, как солнечные и лунные зат-
мения, появление периодических комет, прохождение вблизи Земли
астероидов, крупных метеорных тел или ядер комет.

2. Как возникла наука астрономия? Охарактеризуйте основные периоды её развития.

Как и другие науки, астрономия возникла из практических потребностей человека: необходимость ориентирования при кочевом образе жизни, предсказания наступления сезонов года при земледелии, потребность в измерении времени и летоисчеслении (составлении календарей).

3. Какие объекты и их системы изучает астрономия? Перечислите их в порядке увеличения размеров.

Астрономия изучает и исследует небесные объекты (галактики, звёзды, межзвёздную среду, планеты, спутники планет, карликовые палнеты и малые тела Солнечной системы), объясняет и прогнозирует астрономические явления (солнечные и лунные затмения, появление периодических комет, движение планет, астероидов и т. д.), исследует процессы, происходящие в недрах Солнца и звёзд, эволюцию небесных тел и Вселенной в целом.

4. Из каких разделов состоит астрономия? Кратко охарактеризуйте каждый из них.

  1. Практическая астрономия . Развивающиеся торговля и мореплавание нуждались в разработке методов ориентации, определении географического положения наблюдателя, точном измерении времени исходя из астрономических наблюдений.
  2. Небесная механика . Изучение движения небесных тел.
  3. Сравнительная планетология . Учёные взялись за изучение и сравнение Земли с другими планетами и спутниками с помощью оптических приборов.
  4. Астрофизика . Изучение физическиз явлений и химических процессов в небесных телах, их системах и в космическом пространстве.
  5. Звёздная астрономия . Изучение движения звёзд в нашей Галактике, исследование свойств других звёздных систем.
  6. Космология . Изучение происхождения, строения и эволюции Вселенной.
  7. Радиоастрономия . Изучение радиоизлучений Солнца и далёких космических объектов.

5. Что такое телескоп и для чего он предназначен?

Телескопы служат для собирания света исследуемых небесных тел и получения их изображения. Телескоп увеличивает угол зрения, под которым видны небесные тела, и собирает во много раз больше света, приходящего от светила, чем невооружённый глаз наблюдателя. Благодаря этому в телескоп можно рассматривать невидимые с Земли детали поверхности ближайших небесных тел, а также множество слабых звёзд.

В тех местах на Земле, где зародились древнейшие цивилизации, сохранилось множество письменных документов, из которых видно, что с появлением письменности стала развиваться и астрономия. Наличие письменности позволяло астрономам надежнее сохранять свои наблюдения и знания об окружающем их мире. Письменная история астрономии берет начало в III-II тысячелетиях до н. э.

Поначалу развивалась наблюдательная астрономия, которая рассматривалась как часть астрологии. Для того чтобы получать более точные сведения о передвижениях небесных тел, человек придумал гномон и астрономический календарь. Креме этого, к древнейшим астрономическим инструментам относятся устройства типа отвеса с подвижней линейкой. Их направляли на Солнце для определения углового расстояния от зенита.

Накопление наблюдений и сведений о закономерностях небесных явлений привело к развитию новой науки, причем в разных странах обращали внимание на различные астрономические явления. Люди решали одни и те же задачи, описывали движения светил. Но главным было все-таки социально-экономическое различие, другой уклад жизни общества. Наиболее крупные государства (Вавилон, Египет, Китай) имели развитые торговые и государственные связи. Благодаря этому в области науки у них существовало взаимное влияние.

Государство Вавилон возникло на берегах Евфрата примерно во II тысячелетии до н. э. Согласно письменным источникам, вавилоняне уже в те времена систематически вели наблюдение за небом. Поначалу они просто фиксировали небесные явления, которые воспринимались ими как астральные божества. И только в VII веке до н. э. получила бурное развитие вавилонская математическая астрономия. Она при помощи необычных моделей и методов описывала движение светил. Прежде всего, вавилонянами была выделена на небе Луна, затем Сириус, Орион и Плеяды. Все эти звезды описаны на глиняных табличках, относящихся ко II тысячелетию до н. э. В это же время в Вавилоне появилась официальная должность придворного астронома. Он наблюдал и записывал наиболее важные изменения и явления на небе.

Систематизировав все астрономические записи, вавилоняне изобрели лунный календарь. Немного позднее он был усовершенствован. В календаре было 12 синодических лунных месяцев по 29 и 30 дней поровну, год равнялся 354 дням. Вавилонянам был известен и солнечный год. Для того чтобы согласовать с этим годом лунный календарь, они от случая к случаю делали вставки 13-го месяца.

Начиная с 763 года до н. э. вавилоняне составили практически полный список затмений. Впоследствии эти записи использовал Птолемей. Вставки в календарь, предсказание затмений и другие нужды — все это потребовало развития математики. Достижения вавилонян в математике были очень высокими. Они были знакомы со стереометрией, задолго до греков сформулировали теорему, которая сейчас называется «теорема Пифагора». В IV веке до н. э. в Вавилоне была изобретена эклиптическая система небесных координат. Там же астрономы составили таблицы лунных эфемерид, точно показывавших положение Луны.

Государство Египет, как полагают историки, существовало уже в IV тысячелетии до н. э. Побудительным мотивом интереса египтян к изучению неба стало, скорее всего, сельское хозяйство, полностью зависели от разливов Нила. Разливы происходили строго периодично, в определенный сезон, и египтяне сразу подметили их связь с полуденной высотой Солнца. Поэтому они и стали поклоняться Солнцу как главному богу Ра.

В Египте установилась власть фараонов, которых простые люди обожествляли. Фараоны учредили должность придворного астронома и тщательно следили за развитием этой науки, которая имела не только прикладные, но и хозяйственные и социально-политические цели. Кроме этого, астрономией занимались жрецы и специальные чиновники, которые вели записи.

Согласно египетскому мифу, Солнце возникло из цветка лотоса, который, в свею очередь, появился из первичного водяного хаоса. Практически с самого начала зарождения цивилизации у египтян существовала религиозно-мифологическая картина мира, имеющая астрономическую основу. По их мнению, Земля является центром Вселенной, вокруг которого вращаются все светила. А Меркурий и Венера обращаются еще и вокруг Солнца.

Поздняя астрономия получила в наследство от египтян 365-дневный календарь без вставок. Он использовался европейскими астрономами до XVI века.

Астрономия как наука была известна и в Китае. Примерно во II-I тысячелетии до н. э. китайскими астрономами небо было разделено на 28 участков-созвездий, в которых двигались Солнце, Луна и планеты. Потом они выделили Млечный Путь, назвав его явлением неизвестной природы. Самый ранний звездный каталог, включающий свыше 800 звезд, был составлен Гань Гуном и Ши Шэнем приблизительно в 355 году до н. э. Это примерно на сто лет раньше Тимохариса и Аристилла в Греции. Немного позднее знаменитый китайский астроном Чжан Хэн поделил небо на 124 созвездия и зафиксировал около 2,5 тысячи видимых звезд.

С III века до н. э. в Китае пользовались солнечными и водяными часами. Все астрономические наблюдения велись со специальных площадок-обсерваторий.

Как и у других народов древности, общие представления китайцев о Вселенной имели мифологическую основу. Центром мира у них считалась Китайская империя («Поднебесная, или Серединная, империя»). Вообще, история космогонических представлений древних китайцев дошла до настоящего времени в хрониках ранних династий. В это время было создано учение о пяти земных первоэлементах-стихиях. Это вода, огонь, металл, дерево, земля. Число стихий связано с древним делением на пять сторон света, а также соответствует числу подвижных звезд-планет. Символически это можно представить в сочетаниях: вода — Меркурий — север, огонь— Марс— юг, металл — Венера — запад, дерево — Юпитер— восток, земля — Сатурн — центр. Кроме этого, существовал еще и шестой элемент — ци (воздух, эфир).

В VIII-VII веках до н. э. возникла идея всеобщего изменения в природе и зарождения самой Вселенной. Считалось, что она появилась в результате борьбы двух противоположных начал — положительного, светлого, активного, мужского (ян) и отрицательного, темного, пассивного, женского (инь).

В связи с тем что Китай со временем стал замкнутой страной, развитие наук, в том числе и астрономии, затормозилось.

Не меньший интерес вызывает и Индия. Самыми древними источниками, рассказывающими об астрономических занятиях древних индийцев, считаются печати с изображениями на космогонические мифологические темы (которые датируются III тысячелетием до н. э.). Содержащиеся на них короткие надписи не расшифрованы и по сей день. Печати относятся к индской цивилизации, главными городами которой являлись Хараппа, Мохенджо-Даро, Калибанган. К XVII-XVI векам центры индской культуры были значительно ослаблены землетрясениями и внутренними противоречиями, а затем окончательно разрушены ариями и индо-ираноязычными племенами, давшими начало нынешнему населению Индии.

Документов об астрономических наблюдениях периода индской культуры сохранилось очень немного, но по ним все же можно понять, как складывались представления древних индусов о Вселенной. Первыми объектами исследования были Солнце и Лука. Как и у других древних народов, астрономическими изысканиями занимались жрецы, которые и составили впоследствии календарь. В нем начиная с VI века до н. э. в названиях дней семидневной недели были использованы имена семи подвижных светил: первый день Луны, второй — Марса, третий — Меркурия, четвертый — Юпитера, пятый — Венеры, шестой — Сатурна, седьмой — Солнца. Некоторое сходство с египетским календарем придавало деление месяца на две половины. В древнеиндийской астрономии это были светлая и темная половины.

На представление древних греков о Вселенной большое влияние оказали более ранние культуры: египетская, щумеро-вавилонская и, вероятно, древнеиндийская. Греция имела связи с Египтом, Вавилоном, с государствами Ближнего Востока.

Астрономическими наблюдениями занимались многие греческие философы и астрономы. Из поэм Гесиода и Гомера известно, что древним грекам были знакомы многие созвездия. Они даже создали практически о каждом из них свею легенду.



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме