Подпишись и читай
самые интересные
статьи первым!

Метод координат в пространстве. Вектор нормали прямой (нормальный вектор)

Что такое нормаль? Простыми словами, нормаль – это перпендикуляр. То есть, вектор нормали прямой перпендикулярен данной прямой. Очевидно, что у любой прямой их бесконечно много (так же, как и направляющих векторов), причём все векторы нормали прямой будут коллинеарными (сонаправленными или нет – без разницы).

Разборки с ними будут даже проще, чем с направляющими векторами:

Если прямая задана общим уравнением в прямоугольной системе координат, то вектор является вектором нормали данной прямой.

Если координаты направляющего вектора приходиться аккуратно «вытаскивать» из уравнения, то координаты вектора нормали достаточно просто «снять».

Вектор нормали всегда ортогонален направляющему вектору прямой. Убедимся в ортогональности данных векторов с помощью скалярного произведения:

Приведу примеры с теми же уравнениями, что и для направляющего вектора:

Можно ли составить уравнение прямой, зная одну точку и вектор нормали? Если известен вектор нормали, то однозначно определено и направление самой прямой – это «жёсткая конструкция» с углом в 90 градусов.

Как составить уравнение прямой по точке и вектору нормали?

Если известна некоторая точка , принадлежащая прямой, и вектор нормали этой прямой, то уравнение данной прямой выражается формулой:

Составить уравнение прямой по точке и вектору нормали . Найти направляющий вектор прямой.

Решение: Используем формулу:

Общее уравнение прямой получено, выполним проверку:

1) «Снимаем» координаты вектора нормали с уравнения : – да, действительно, получен исходный вектор из условия (либо должен получиться коллинеарный исходному вектор).

2) Проверим, удовлетворяет ли точка уравнению :

Верное равенство.

После того, как мы убедились в том, что уравнение составлено правильно, выполним вторую, более лёгкую часть задания. Вытаскиваем направляющий вектор прямой:

Ответ:

На чертеже ситуация выглядит следующим образом:

В целях тренировки аналогичная задача для самостоятельного решения:

Составить уравнение прямой по точке и нормальному вектору . Найти направляющий вектор прямой.

Заключительный раздел урока будет посвящен менее распространённым, но тоже важным видам уравнений прямой на плоскости

Уравнение прямой в отрезках.
Уравнение прямой в параметрической форме

Уравнение прямой в отрезках имеет вид , где – ненулевые константы. Некоторые типы уравнений нельзя представить в таком виде, например, прямую пропорциональность (так как свободный член равен нулю и единицу в правой части никак не получить).



Это, образно говоря, «технический» тип уравнения. Обыденная задача состоит в том, чтобы общее уравнение прямой представить в виде уравнения прямой в отрезках . Чем оно удобно? Уравнение прямой в отрезках позволяет быстро найти точки пересечения прямой с координатными осями, что бывает очень важным в некоторых задачах высшей математики.

Найдём точку пересечения прямой с осью . Обнуляем «игрек», и уравнение принимает вид . Нужная точка получается автоматически: .

Аналогично с осью – точка, в которой прямая пересекает ось ординат.

Действия, которые я только что подробно разъяснил, выполняются устно.

Дана прямая . Составить уравнение прямой в отрезках и определить точки пересечения графика с координатными осями.

Решение: Приведём уравнение к виду . Сначала перенесём свободный член в правую часть:

Чтобы получить справа единицу, разделим каждый член уравнения на –11:

Делаем дроби трёхэтажными:

Точки пересечения прямой с координатными осями всплыли на поверхность:

Ответ:

Осталось приложить линеечку и провести прямую.

Легко усмотреть, что данная прямая однозначно определяется красным и зелёным отрезками, отсюда и название – «уравнение прямой в отрезках».

Конечно, точки не так трудно найти и из уравнения , но задача всё равно полезная. Рассмотренный алгоритм потребуется для нахождения точек пересечения плоскости с координатными осями, для приведения уравнения линии второго порядка к каноническому виду и в некоторых других задачах. Поэтому пара прямых для самостоятельного решения:

Составить уравнение прямой в отрезках и определить точки её пересечения с координатными осями.

Решения и ответы в конце. Не забывайте, что при желании всё можно начертить.

Как составить параметрические уравнениЯ прямой?



Параметрические уравнения прямой больше актуальны для прямых в пространстве, но без них наш конспект осиротеет.

Если известна некоторая точка , принадлежащая прямой, и направляющий вектор этой прямой, то параметрические уравнения данной прямой задаются системой:

Составить параметрические уравнения прямой по точке и направляющему вектору

Решение закончилось, не успев начаться:

Параметр «тэ» может принимать любые значения от «минус бесконечности» до «плюс бесконечности», и каждому значению параметра соответствует конкретная точка плоскости. Например, если , то получаем точку .

Обратная задача: как проверить, будет ли точка условия принадлежать данной прямой?

Подставим координаты точки в полученные параметрические уравнения:

Из обоих уравнений следует, что , то есть, система совместна и имеет единственное решение.

Рассмотрим более содержательные задания:

Составить параметрические уравнения прямой

Решение: По условию прямая задана в общем виде. Для того чтобы составить параметрические уравнения прямой, нужно знать её направляющий вектор и какую-нибудь точку, принадлежащую данной прямой.

Найдём направляющий вектор:

Теперь нужно найти какую-нибудь точку, принадлежащую прямой (подойдёт любая), в этих целях общее уравнение удобно переписать в виде уравнения с угловым коэффициентом:

Напрашивается, конечно, точка

Составим параметрические уравнения прямой:

И напоследок небольшая творческая задача для самостоятельного решения.

Составить параметрические уравнения прямой, если известна принадлежащая ей точка и вектор нормали

Задачу можно оформить не единственным способом. Одна из версий решения и ответ в конце.

Решения и ответы:

Пример 2: Решение: Найдём угловой коэффициент:

Уравнение прямой составим по точке и угловому коэффициенту :

Ответ:

Пример 4: Решение: Уравнение прямой составим по формуле:

Ответ:

Пример 6: Решение: Используем формулу:

Ответ : (ось ординат)

Пример 8: Решение : Составим уравнение прямой по двум точкам:

Умножаем обе части на –4:

И делим на 5:

Ответ :

Пример 10: Решение : Используем формулу:

Сокращаем на –2:

Направляющий вектор прямой:
Ответ :

Пример 12:
а) Решение : Преобразуем уравнение:

Таким образом:

Ответ :

б) Решение : Преобразуем уравнение:

Таким образом:

Ответ :

Пример 15: Решение : Сначала составим общее уравнение прямой по точке и вектору нормали :

Умножаем на 12:

Умножаем ещё на 2, чтобы после раскрытия второй скобки избавиться от дроби:

Направляющий вектор прямой:
Параметрические уравнения прямой составим по точке и направляющему вектору :
Ответ :

Простейшие задачи с прямой на плоскости.
Взаимное расположение прямых. Угол между прямыми

Продолжаем рассматривать эти бесконечные-бесконечные прямые.



Как найти расстояние от точки до прямой?
Как найти расстояние между двумя параллельными прямыми?
Как найти угол между двумя прямыми?

Взаимное расположение двух прямых

Рассмотрим две прямые, заданные уравнениями в общем виде:

Тот случай, когда зал подпевает хором. Две прямые могут:

1) совпадать;

2) быть параллельными: ;

3) или пересекаться в единственной точке: .

Пожалуйста, запомните математический знак пересечения , он будет встречаться очень часто. Запись обозначает, что прямая пересекается с прямой в точке .

Как определить взаимное расположение двух прямых?

Начнём с первого случая:

Две прямые совпадают, тогда и только тогда, когда их соответствующие коэффициенты пропорциональны, то есть, существует такое число «лямбда», что выполняются равенства

Рассмотрим прямые и составим три уравнения из соответствующих коэффициентов: . Из каждого уравнения следует, что , следовательно, данные прямые совпадают.

Действительно, если все коэффициенты уравнения умножить на –1 (сменить знаки), и все коэффициенты уравнения сократить на 2, то получится одно и то же уравнение: .

Второй случай, когда прямые параллельны:

Две прямые параллельны тогда и только тогда, когда их коэффициенты при переменных пропорциональны: , но .

В качестве примера рассмотрим две прямые . Проверяем пропорциональность соответствующих коэффициентов при переменных :

Однако совершенно очевидно, что .

И третий случай, когда прямые пересекаются:

Две прямые пересекаются, тогда и только тогда, когда их коэффициенты при переменных НЕ пропорциональны, то есть НЕ существует такого значения «лямбда», чтобы выполнялись равенства

Так, для прямых составим систему:

Из первого уравнения следует, что , а из второго уравнения: , значит, система несовместна (решений нет). Таким образом, коэффициенты при переменных не пропорциональны.

Вывод: прямые пересекаются

В практических задачах можно использовать только что рассмотренную схему решения. Она, кстати, весьма напоминает алгоритм проверки векторов на коллинеарность. Но существует более цивилизованная упаковка:

Выяснить взаимное расположение прямых:

Решение основано на исследовании направляющих векторов прямых:

а) Из уравнений найдём направляющие векторы прямых: .


, значит, векторы не коллинеарны и прямые пересекаются.

б) Найдем направляющие векторы прямых :

Прямые имеют один и тот же направляющий вектор, значит, они либо параллельны, либо совпадают. Тут и определитель считать не надо.

Очевидно, что коэффициенты при неизвестных пропорциональны, при этом .

Выясним, справедливо ли равенство :

Таким образом,

в) Найдем направляющие векторы прямых :

Вычислим определитель, составленный из координат данных векторов:
, следовательно, направляющие векторы коллинеарны. Прямые либо параллельны, либо совпадают.

Коэффициент пропорциональности «лямбда» можно узнать прямо соотношения коллинеарных направляющих векторов . Впрочем, можно и через коэффициенты самих уравнений: .

Теперь выясним, справедливо ли равенство . Оба свободных члена нулевые, поэтому:

Полученное значение удовлетворяет данному уравнению (ему удовлетворяет вообще любое число).

Таким образом, прямые совпадают.

Как построить прямую, параллельную данной?

Прямая задана уравнением . Составить уравнение параллельной прямой, которая проходит через точку .

Решение: Обозначим неизвестную прямую буквой . Что о ней сказано в условии? Прямая проходит через точку . А если прямые параллельны, то очевидно, что направляющий вектор прямой «цэ» подойдёт и для построения прямой «дэ».

Вытаскиваем направляющий вектор из уравнения :

Геометрия примера выглядит незатейливо:

Аналитическая же проверка состоит в следующих шагах:

1) Проверяем, что у прямых один и тот же направляющий вектор (если уравнение прямой не упрощено должным образом, то векторы будут коллинеарны).

2) Проверяем, удовлетворяет ли точка полученному уравнению .

Аналитическую проверку в большинстве случаев легко выполнить устно. Посмотрите на два уравнения, и многие из вас быстро определят параллельность прямых безо всякого чертежа.

Примеры для самостоятельного решения сегодня будут творческими.

Составить уравнение прямой, проходящей через точку , параллельную прямой , если

Самый короткий путь – в конце.

Как найти точку пересечения двух прямых?

Если прямые пересекаются в точке , то её координаты являются решением системы линейных уравнений

Как найти точку пересечения прямых? Решить систему.

Вот вам и геометрический смысл системы двух линейных уравнений с двумя неизвестными – это две пересекающиеся (чаще всего) прямые на плоскости.

Найти точку пересечения прямых

Решение: Существуют два способа решения – графический и аналитический.

Графический способ состоит в том, чтобы просто начертить данные прямые и узнать точку пересечения непосредственно из чертежа:

Вот наша точка: . Для проверки следует подставить её координаты в каждое уравнение прямой, они должны подойти и там, и там. Иными словами, координаты точки являются решением системы . По сути, мы рассмотрели графический способ решения системы линейных уравнений с двумя уравнениями, двумя неизвестными.

Графический способ, конечно, неплох, но существует заметные минусы. Нет, дело не в том, что так решают семиклассники, дело в том, что на правильный и ТОЧНЫЙ чертёж уйдёт время. Кроме того, некоторые прямые построить не так-то просто, да и сама точка пересечения может находиться где-нибудь в тридесятом царстве за пределами тетрадного листа.

Поэтому точку пересечения целесообразнее искать аналитическим методом. Решим систему:

Для решения системы использован метод почленного сложения уравнений.

Проверка тривиальна – координаты точки пересечения должны удовлетворять каждому уравнению системы.

Найти точку пересечения прямых в том случае, если они пересекаются.

Это пример для самостоятельного решения. Задачу удобно разбить на несколько этапов. Анализ условия подсказывает, что необходимо:
1) Составить уравнение прямой .
2) Составить уравнение прямой .
3) Выяснить взаимное расположение прямых .
4) Если прямые пересекаются, то найти точку пересечения.

Разработка алгоритма действий типична для многих геометрических задач, и я на этом буду неоднократно заострять внимание.

Полное решение и ответ в конце:

Перпендикулярные прямые. Расстояние от точки до прямой.
Угол между прямыми

Как построить прямую, перпендикулярную данной?

Прямая задана уравнением . Составить уравнение перпендикулярной прямой , проходящей через точку .

Решение: По условию известно, что . Неплохо бы найти направляющий вектор прямой . Поскольку прямые перпендикулярны, фокус прост:

Из уравнения «снимаем» вектор нормали: , который и будет направляющим вектором прямой .

Уравнение прямой составим по точке и направляющему вектору :

Ответ:

Развернём геометрический этюд:

Аналитическая проверка решения:

1) Из уравнений вытаскиваем направляющие векторы и с помощью скалярного произведения векторов приходим к выводу, что прямые действительно перпендикулярны: .

Кстати, можно использовать векторы нормали, это даже проще.

2) Проверяем, удовлетворяет ли точка полученному уравнению .

Проверку, опять же, легко выполнить устно.

Найти точку пересечения перпендикулярных прямых , если известно уравнение и точка .

Это пример для самостоятельного решения. В задаче несколько действий, поэтому решение удобно оформить по пунктам.

Расстояние от точки до прямой

Расстояние в геометрии традиционно обозначают греческой буквой «р», например: – расстояние от точки «м» до прямой «д».

Расстояние от точки до прямой выражается формулой

Найти расстояние от точки до прямой

Решение: всё что нужно, это аккуратно подставить числа в формулу и провести вычисления:

Ответ:

Выполним чертёж:

Найденное расстояние от точки до прямой – это в точности длина красного отрезка. Если оформить чертёж на клетчатой бумаге в масштабе 1 ед. = 1 см (2 клетки), то расстояние можно измерить обыкновенной линейкой.

Рассмотрим ещё одно задание по этому же чертежу:

Как построить точку, симметричную относительно прямой?

Задача состоит в том, чтобы найти координаты точки , которая симметрична точке относительно прямой . Предлагаю выполнить действия самостоятельно, однако обозначу алгоритм решения с промежуточными результатами:

1) Находим прямую , которая перпендикулярна прямой .

2) Находим точку пересечения прямых: .


В геометрии за угол между двумя прямыми принимается МЕНЬШИЙ угол, из чего автоматически следует, что он не может быть тупым. На рисунке угол, обозначенный красной дугой, не считается углом между пересекающимися прямыми. А считается таковым его «зелёный» сосед или противоположно ориентированный «малиновый» угол .

Если прямые перпендикулярны, то за угол между ними можно принимать любой из 4-х углов.

Чем отличаются углы ? Ориентацией. Во-первых, принципиально важным является направление «прокрутки» угла. Во-вторых, отрицательно ориентированный угол записывается со знаком «минус», например, если .

Зачем я это рассказал? Вроде бы можно обойтись и обычным понятием угла. Дело в том, что в формулах, по которым мы будем находить углы, запросто может получиться отрицательный результат, и это не должно застать вас врасплох. Угол со знаком «минус» ничем не хуже, и имеет вполне конкретный геометрический смысл. На чертеже для отрицательного угла следует обязательно указывать стрелкой его ориентацию (по часовой стрелке).

Исходя из вышесказанного, решение удобно оформить в два шага:

1) Вычислим скалярное произведение направляющих векторов прямых:
, значит, прямые не перпендикулярны.

2) Угол между прямыми найдём по формуле:

С помощью обратной функции легко найти и сам угол. При этом используем нечётность арктангенса:

Ответ:

В ответе указываем точное значение, а также приближённое значение (желательно и в градусах, и в радианах), вычисленное с помощью калькулятора.

Ну, минус, так минус, ничего страшного. Вот геометрическая иллюстрация:

Неудивительно, что угол получился отрицательной ориентации, ведь в условии задачи первым номером идёт прямая и «открутка» угла началась именно с неё.

Есть и третий способ решения. Идея состоит в том, чтобы вычислить угол между направляющими векторами прямых:

Здесь уже речь идёт не об ориентированном угле, а «просто об угле», то есть результат заведомо будет положительным. Загвоздка состоит в том, что может получиться тупой угол (не тот, который нужен). В этом случае придётся делать оговорку, что угол между прямыми – это меньший угол, и из «пи» радиан (180-ти градусов) вычитать получившийся арккосинус.

Найти угол между прямыми .

Это пример для самостоятельного решения. Попробуйте решить его двумя способами.

Решения и ответы:

Пример 3: Решение: Найдём направляющий вектор прямой :

Уравнение искомой прямой составим по точке и направляющему вектору

Примечание: здесь первое уравнение системы умножено на 5, затем из 1-го уравнения почленно вычтено 2-ое.
Ответ:

В самом общем случае нормаль к поверхности представляет ее локальную кривизну, и, следовательно, направление зеркального отражения (рис. 3.5). Применительно к нашим знаниям можно сказать, что нормалью называется вектор, определяющий ориентацию грани (рис. 3.6).

Рис. 3.5 Рис. 3.6

Во многих алгоритмах удаления невидимых линий и поверхностей используются только ребра и вершины, поэтому, для того чтобы объединить их с моделью освещения, необходимо знать приближенное значение нормали на ребрах и в вершинах. Пусть заданы уравнения плоскостей полигональных граней, тогда нормаль к их общей вершине равна среднему значению нормалей ко всем многоугольникам, сходящимся к этой вершине. Например, на рис. 3.7 направление приближенной нормали в точке V 1 есть:

n v1 = (a 0 + a 1 + a 4 )i + (b 0 + b 1 + b 4 )j + (c 0 + c 1 + c 4 )k , (3.15)

где a 0 , a 1 , a 4 , b 0 , b 1 , b 4 , c 0 , c 1 , c 4 - коэффициенты уравнений плоскостей трех многоугольниковP 0 , P 1 , P 4 , окружающихV 1 . Отметим, что если требуется найти только направление нормали, то делить результат на количество граней необязательно.

Если же уравнения плоскостей не заданы, то нормаль к вершине можно определить, усредняя векторные произведения всех ребер, пересекающихся в вершине. Еще раз, рассматривая вершину V 1 на рис. 3.7, найдем направление приближенной нормали:

n v1 = V 1 V 2 V 1 V 4 +V 1 V 5 V 1 V 2 + V 1 V 4 V 1 V 5 (3.16)

Рис. 3.7 - Аппроксимация нормали к полигональной поверхности

Следует обратить внимание на то, что необходимы только внешние нормали. Кроме того, если полученный вектор не нормируется, то его величина зависит от количества и площади конкретных многоугольников, а также от количества и длины конкретных ребер. Сильнее проявляется влияние многоугольников с большей площадью и более длинными ребрами.

Когда нормаль к поверхности используется для определения ин­тенсивности и для изображения объекта или сцены выполняется перспективное преобразование, то нормаль следует вычислять до перспективного деления. В противном случае направление нор­мали будет искажено, а это приведет к тому, что интенсивность, задаваемая моделью освещения, будет определена неправильно.

Если известно аналитическое описание плоскости (поверхности), то нормаль вычисляется непосредственно. Зная уравнение плоскости каждой грани многогранника, можно найти направление внешней нормали.

Если уравнение плоскости имеет вид:

то вектор нормали к этой плоскости записывается следующим образом:

, (3.18)

где
- единичные векторы осейx,y,z соответственно.

Величина d вычисляется с помощью произвольной точки, принадлежащей плоскости, например, для точки (
)

Пример. Рассмотрим 4-х сторонний плоский многоугольник, описываемый 4-мя вершинами V1(1,0,0), V2(0,1,0), V3(0,0,1) и V4(1,1,1) (см. рис. 3.7).

Уравнение плоскости имеет вид:

x + y + z - 1 = 0.

Получим нормаль к этой плоскости, используя векторное произведение пары векторов, являющихся смежными ребрами к одной из вершин, например, V1:

Во многих алгоритмах удаления невидимых линий и поверхностей используются только ребра или вершины, поэтому, для того, чтобы объединить их с моделью освещения, необходимо знать приближенное значение нормали на ребрах и в вершинах.

Пусть заданы уравнения плоскостей граней многогранника, тогда нормаль к их общей вершине равна среднему значению нормалей ко всем граням, сходящимся в этой вершине.

Нормаль плоскости n (вектор нормали к плоскости) – это всякий направленный перпендикуляр к ней (ортогональный вектор). Последующие выкладки по определении нормали зависят от метода задания плоскости.

Инструкция

1. Если задано всеобщее уравнение плоскости – AX+BY+CZ+D=0 либо его форма A(x-x0)+B(y-y0)+C(z-z0)=0, то дозволено сразу записать результат – n(А, В, С). Дело в том, что это уравнение было получено, как задача определения уравнения плоскости по нормали и точке.

2. Для приобретения всеобщего результата, вам потребуется векторное произведение векторов из-за того, что последнее неизменно перпендикулярно начальным векторам. Выходит, векторным произведением векторов, является определенный вектор, модуль которого равен произведению модуля первого (а) на модуль второго (b) и на синус угла между ними. При этом данный вектор (обозначьте его через n) ортогонален a и b – это основное. Тройка этих векторов правая, то есть из конца n кратчайший поворот от a к b совершается вопреки часовой стрелки. – одно из общепризнанных обозначений векторного произведения. Для вычисления векторного произведения в координатной форме, применяется вектор-определитель (см. рис.1)

3. Для того дабы не путаться со знаком «-», перепишите итог в виде: n={nx, ny, nz}=i(aybz-azby)+j(azbx-axbz)+k(axby-aybx), и в координатах: {nx, ny, nz}={(aybz-azby), (azbx-axbz), (axby-aybx)}.Больше того, чтобы не путаться с численными примерами выпишете все полученные значения по отдельности: nx=aybz-azby, ny=azbx-axbz, nz=axby-aybx.

4. Вернитесь к решению поставленной задачи. Плоскость дозволено задать разными методами. Пускай нормаль к плоскости определяется двумя неколлинеарными векторами, причем сразу численно. Пускай даны векторы a(2, 4, 5) и b(3, 2, 6). Нормаль к плоскости совпадает с их векторным произведением и, как только что было выяснено будет равна n(nx, ny, nz),nx=aybz-azby, ny=azbx-axbz, nz=axby-aybx. В данном случае ax=2, ay=4, az=5, bx=3, by=2, bz=6. Таким образом, nx=24-10=14, ny=12-15=-3, nz=4-8=-4. Нормаль обнаружена – n(14, -3, -4). При этом она является нормалью к целому семейству плоскостей.

Под математическим термином нормаль прячется больше привычное на слух представление перпендикуляра. То есть задача нахождения нормали подразумевает поиск уравнения прямой, перпендикулярной к заданной косой либо поверхности, проходящей через определенную точку. В зависимости от того, на плоскости либо в пространстве требуется обнаружить нормаль , данная задача решается по-различному. Разглядим оба варианта задачи.

Вам понадобится

  • умение находить производные функции, знание находить частные производные функции нескольких переменных

Инструкция

1. Нормаль к косой, заданной на плоскости в виде уравнения у = f(x).Находим значение функции, которая определяет уравнение данной косой в точке, в которой ищется уравнение нормали: а = f(x0). Находим производную к данной функции: f"(x). Ищем значение производной в этой же точке: B = f"(x0). Вычисляем значение дальнейшего выражения: C = a – B*x0. Составляем уравнение нормали, которое будет иметь вид: у = B*x + C.

2. Нормаль к поверхности либо косой, заданной в пространстве в виде уравнения f = f(x,y,z).Находим частные производные к данной нам функции: f’x(x,y,z), f’y(x,y,z), f’z(x,y,z). Ищем значение этих производных в точке М(x0,y0,z0) – точка, в которой нужно обнаружить уравнение нормали к поверхности либо пространственной косой: A = f’x(x0,y0,z0), B = f’y(x0,y0,z0), C = f’z(x0,y0,z0). Составляем уравнение нормали, которое будет иметь вид: (x – x0)/A = (y – y0)/B = (z – z0)/C

3. Пример:Обнаружим уравнение нормали к функции у = х – х^2 в точке х = 1.Значение функции в данной точке а = 1 – 1 = 0.Производная к функции у’ = 1 – 2х, в данной точке В = у"(1) = -1.Вычисляем С = 0 – (-1)*1 = 1.Желанное уравнение нормали имеет вид: у = -х + 1

Видео по теме

Полезный совет
Частные производные всякий функции нетрудно обнаружить, представив, что все переменные, помимо той которая является исследуемой – константы.

Задача поиска вектора нормали прямой на плоскости и плоскости в пространстве слишком примитивна. Реально она завершается записью всеобщих уравнений прямой либо плоскости. От того что кривая на плоскости каждого лишь частный случай поверхности в пространстве, то именно о нормалях к поверхности и пойдет речь.

Инструкция

1. 1-й метод Данный метод самый примитивный, но для его понимания требуется умение представления скалярного поля. Однако, и неискушенный в этом вопросе читатель сумеет применять результирующие формулы данного вопроса.

2. Знаменито, что скалярное поле f задается как f=f(x, y, z), а любая поверхность при этом – это поверхность яруса f(x, y, z)=C (C=const). Помимо того, нормаль поверхности яруса совпадает с градиентом скалярного поля в заданной точке.

3. Градиентом скалярно поля (функции 3 переменных) именуется вектор g=gradf=iдf/дx+jдf/дy+kдf/дz={дf/дx, дf/дy, дf/дz}. Потому что длина нормали значения не имеет, остается лишь записать результат. Нормаль к поверхностиf(x, y, z)-C=0 в точкеM0(x0, y0, z0) n=gradf=iдf/дx+jдf/дy+kдf/дz={дf/дx, дf/дy, дf/дz}.

4. 2-й метод Пускай поверхность задана уравнением F(x, y, z)=0. Дабы дозволено было в будущем провести аналогии с первым методом, следует рассматривать, что производная непрерывной равна нулю, и F задается как f(x, y, z)-C=0 (C=const). Если провести сечение этой поверхности произвольной плоскостью, то возникшую пространственную кривую дозволено считать годографом какой-нибудь вектор-функции r(t)= ix(t)x+jy(t)+kz(t). Тогда производная вектора r’(t)= ix’(t)+jy’(t)+kz’(t) направлена по касательной в некоторой точке M0(x0, y0, z0) поверхности (см. рис.1).

5. Чтобы не появилось путаницы, нынешние координаты касательной прямой следует обозначить, скажем, курсивом (x, y, z). Канонические уравнение касательной прямой, с учетом, что r’(t0) – направляющий вектор, записывается как (x-x(t0))/(dx(t0)/dt)= (y-y(t0))/(dy(t0)/dt)= (z-z(t0))/(dz(t0)/dt).

6. Подставив координаты вектор-функции в уравнение поверхности f(x, y, z)-C=0 и продифференцировав по t вы получите (дf/дx)(дx/дt)+(дf/дy) (дy/дt)+(дf/дz)(дz/дt)=0. Равенство представляет собой скалярное произведение некоторого вектора n(дf/дx, дf/дy, дf/дz) и r’(x’(t), y’(t), z’(t)). Потому что оно равно нулю, то n(дf/дx, дf/дy, дf/дz) и есть желанный вектор нормали . Видимо, что итоги обоих методов одинаковы.

7. Пример (имеет теоретическое значение). Обнаружить вектор нормали к поверхности заданной типичным уравнением функции 2-х переменных z=z(x, y). Решение. Перепишите это уравнение в форме z-z(x, y)=F(x, y, z)=0. Следуя любому из предложных методов, получается, что n(-дz/дx, -дz/дy, 1) – желанный вектор нормали .

Метод координат — весьма эффективный и универсальный способ нахождения любых углов или расстояний между стереометрическими объектами в пространстве. Если Ваш репетитор по математике имеет высокую квалификацию, то он должен это знать. В противном случае я бы советовал для «С» части сменить репетитора. Моя подготовка к ЕГЭ по математике С1-С6 обычно включает разбор основных алгоритмов и формул, описанных ниже.

Угол между прямыми а и b

Углом между прямыми в пространстве называется угол между любыми параллельными им пересекающимися прямыми. Этот угол равен углу между направляющими векторами данных прямых (или дополняет его до 180 град).

Какой алгоритм использует репетитор по математике для поиска угла?

1) Выбираем любые вектора и , имеющие направления прямых а и b (параллельные им).
2) Определяем координаты векторов и по соответствующим координатам их начал и концов (от координат конца вектора нужно отнять координаты начала).
3) Подставляем найденный координаты в формулу:
. Для нахождения самого угла, нужно найти арккосинус полученного результата.

Нормаль к плоскости

Нормалью к плоскости называется любой вектор, перпендикулярный к этой плоскости.
Как найти нормаль? Для поиска координат нормали достаточно узнать координаты любых трех точек M, N и K, лежащих в данной плоскости. По этим координатам находим координаты векторов и и требуем выполнения условий и . Приравнивая скалярные произведение векторов к нулю, составляем систему уравнений с тремя переменными, из которой можно найти координаты нормали.

Замечание репетитора по математике : Совсем не обязательно решать систему полностью, ибо достаточно подобрать хотя бы одну нормаль. Для этого можно подставить вместо какой-нибудь из ее неизвестных координат любое число (например единицу) и решить систему двух уравнений с оставшимися двумя неизвестными. Если она решений не имеет, то это значит, что в семействе нормалей нет той, у которой по выбранной переменной стоит единица. Тогда подставьте единицу вместо другой переменной (другой координаты) и решите новую систему. Если опять промахнетесь, то Ваша нормаль будет иметь единицу по последней координате, а сама она окажется параллельной какой-нибудь координатной плоскости (в таком случае ее легко найти и без системы).

Допустим, что нам заданы прямая и плоскость координатами направляющего вектора и нормали
Угол между прямой и плоскость вычисляется по следующей формуле:

Пусть и — две любые нормали к данным плоскостям. Тогда косинус угла между плоскостями равен модулю косинуса угла между нормалями:

Уравнение плоскости в пространстве

Точки, удовлетворяющие равенству образуют плоскость с нормалью . Коэффициент отвечает за величину отклонения (параллельного сдвига) между двумя плоскостями с одной и той же заданной нормалью . Для того, чтобы написать уравнение плоскости нужно сначала найти ее нормаль (как это описано выше), а затем подставить координаты любой точки плоскости вместе с координатами найденной нормали в уравнение и найти коэффициент .

Для того, чтобы использовать метод координат, надо хорошо знать формулы. Их три:

На первый взгляд, выглядит угрожающе, но достаточно немного практики - и все будет работать великолепно.

Задача. Найти косинус угла между векторами a = (4; 3; 0) и b = (0; 12; 5).

Решение. Поскольку координаты векторов нам даны, подставляем их в первую формулу:

Задача. Составить уравнение плоскости, проходящей через точки M = (2; 0; 1), N = (0; 1; 1) и K = (2; 1; 0), если известно, что она не проходит через начало координат.

Решение. Общее уравнение плоскости: Ax + By + Cz + D = 0, но, поскольку искомая плоскость не проходит через начало координат - точку (0; 0; 0) - то положим D = 1. Поскольку эта плоскость проходит через точки M, N и K, то координаты этих точек должны обращать уравнение в верное числовое равенство.

Подставим вместо x, y и z координаты точки M = (2; 0; 1). Имеем:
A · 2 + B · 0 + C · 1 + 1 = 0 ⇒ 2A + C + 1 = 0;

Аналогично, для точек N = (0; 1; 1) и K = (2; 1; 0) получим уравнения:
A · 0 + B · 1 + C · 1 + 1 = 0 ⇒ B + C + 1 = 0;
A · 2 + B · 1 + C · 0 + 1 = 0 ⇒ 2A + B + 1 = 0;

Итак, у нас есть три уравнения и три неизвестных. Составим и решим систему уравнений:

Получили, что уравнение плоскости имеет вид: − 0,25x − 0,5y − 0,5z + 1 = 0.

Задача. Плоскость задана уравнением 7x − 2y + 4z + 1 = 0. Найти координаты вектора, перпендикулярного данной плоскости.

Решение. Используя третью формулу, получаем n = (7; − 2; 4) - вот и все!

Вычисление координат векторов

А что, если в задаче нет векторов - есть только точки, лежащие на прямых, и требуется вычислить угол между этими прямыми? Все просто: зная координаты точек - начала и конца вектора - можно вычислить координаты самого вектора.

Чтобы найти координаты вектора, надо из координат его конца вычесть координаты начала.

Эта теорема одинаково работает и на плоскости, и в пространстве. Выражение «вычесть координаты» означает, что из координаты x одной точки вычитается координата x другой, затем то же самое надо сделать с координатами y и z. Вот несколько примеров:

Задача. В пространстве расположены три точки, заданные своими координатами: A = (1; 6; 3), B = (3; − 1; 7) и C = (− 4; 3; − 2). Найти координаты векторов AB, AC и BC.

Рассмотрим вектор AB: его начало находится в точке A, а конец - в точке B. Следовательно, чтобы найти его координаты, надо из координат точки B вычесть координаты точки A:
AB = (3 − 1; − 1 − 6; 7 − 3) = (2; − 7; 4).

Аналогично, начало вектора AC - все та же точка A, зато конец - точка C. Поэтому имеем:
AC = (− 4 − 1; 3 − 6; − 2 − 3) = (− 5; − 3; − 5).

Наконец, чтобы найти координаты вектора BC, надо из координат точки C вычесть координаты точки B:
BC = (− 4 − 3; 3 − (− 1); − 2 − 7) = (− 7; 4; − 9).

Ответ: AB = (2; − 7; 4); AC = (− 5; − 3; − 5); BC = (− 7; 4; − 9)

Обратите внимание на вычисление координат последнего вектора BC: очень многие ошибаются, когда работают с отрицательными числами. Это касается переменной y: у точки B координата y = − 1, а у точки C y = 3. Получаем именно 3 − (− 1) = 4, а не 3 − 1, как многие считают. Не допускайте таких глупых ошибок!

Вычисление направляющих векторов для прямых

Если вы внимательно прочитаете задачу C2, то с удивлением обнаружите, что никаких векторов там нет. Там только прямые да плоскости.

Для начала разберемся с прямыми. Здесь все просто: на любой прямой найдутся хотя бы две различные точки и, наоборот, любые две различные точки задают единственную прямую...

Кто-нибудь понял, что написано в предыдущем абзаце? Я и сам не понял, поэтому объясню проще: в задаче C2 прямые всегда задаются парой точек. Если ввести систему координат и рассмотреть вектор с началом и концом в этих точках, получим так называемый направляющий вектор для прямой:

Зачем нужен этот вектор? Дело в том, что угол между двумя прямыми - это угол между их направляющими векторами. Таким образом, мы переходим от непонятных прямых к конкретным векторам, координаты которых легко считаются. Насколько легко? Взгляните на примеры:

Задача. В кубе ABCDA 1 B 1 C 1 D 1 проведены прямые AC и BD 1 . Найдите координаты направляющих векторов этих прямых.

Поскольку длина ребер куба в условии не указана, положим AB = 1. Введем систему координат с началом в точке A и осями x, y, z, направленными вдоль прямых AB, AD и AA 1 соответственно. Единичный отрезок равен AB = 1.

Теперь найдем координаты направляющего вектора для прямой AC. Нам потребуются две точки: A = (0; 0; 0) и C = (1; 1; 0). Отсюда получаем координаты вектора AC = (1 − 0; 1 − 0; 0 − 0) = (1; 1; 0) - это и есть направляющий вектор.

Теперь разберемся с прямой BD 1 . На ней также есть две точки: B = (1; 0; 0) и D 1 = (0; 1; 1). Получаем направляющий вектор BD 1 = (0 − 1; 1 − 0; 1 − 0) = (− 1; 1; 1).

Ответ: AC = (1; 1; 0); BD 1 = (− 1; 1; 1)

Задача. В правильной треугольной призме ABCA 1 B 1 C 1 , все ребра которой равны 1, проведены прямые AB 1 и AC 1 . Найдите координаты направляющих векторов этих прямых.

Введем систему координат: начало в точке A, ось x совпадает с AB, ось z совпадает с AA 1 , ось y образует с осью x плоскость OXY, которая совпадает с плоскостью ABC.

Для начала разберемся с прямой AB 1 . Тут все просто: у нас есть точки A = (0; 0; 0) и B 1 = (1; 0; 1). Получаем направляющий вектор AB 1 = (1 − 0; 0 − 0; 1 − 0) = (1; 0; 1).

Теперь найдем направляющий вектор для AC 1 . Все то же самое - единственное отличие в том, что у точки C 1 иррациональные координаты. Итак, A = (0; 0; 0), поэтому имеем:

Ответ: AB 1 = (1; 0; 1);

Небольшое, но очень важное замечание насчет последнего примера. Если начало вектора совпадает с началом координат, вычисления резко упрощаются: координаты вектора просто равны координатам конца. К сожалению, это верно лишь для векторов. Например, при работе с плоскостями присутствие на них начала координат только усложняет выкладки.

Вычисление нормальных векторов для плоскостей

Нормальные векторы - это не те векторы, у которых все в порядке, или которые чувствуют себя хорошо. По определению, нормальный вектор (нормаль) к плоскости - это вектор, перпендикулярный данной плоскости.

Другими словами, нормаль - это вектор, перпендикулярный любому вектору в данной плоскости. Наверняка вы встречали такое определение - правда, вместо векторов речь шла о прямых. Однако чуть выше было показано, что в задаче C2 можно оперировать любым удобным объектом - хоть прямой, хоть вектором.

Еще раз напомню, что всякая плоскость задается в пространстве уравнением Ax + By + Cz + D = 0, где A, B, C и D - некоторые коэффициенты. Не умаляя общности решения, можно полагать D = 1, если плоскость не проходит через начало координат, или D = 0, если все-таки проходит. В любом случае, координаты нормального вектора к этой плоскости равны n = (A; B; C).

Итак, плоскость тоже можно успешно заменить вектором - той самой нормалью. Всякая плоскость задается в пространстве тремя точками. Как найти уравнение плоскости (а следовательно - и нормали), мы уже обсуждали в самом начале статьи. Однако этот процесс у многих вызывает проблемы, поэтому приведу еще парочку примеров:

Задача. В кубе ABCDA 1 B 1 C 1 D 1 проведено сечение A 1 BC 1 . Найти нормальный вектор для плоскости этого сечения, если начало координат находится в точке A, а оси x, y и z совпадают с ребрами AB, AD и AA 1 соответственно.

Поскольку плоскость не проходит через начало координат, ее уравнение выглядит так: Ax + By + Cz + 1 = 0, т.е. коэффициент D = 1. Поскольку эта плоскость проходит через точки A 1 , B и C 1 , то координаты этих точек обращают уравнение плоскости в верное числовое равенство.


A · 0 + B · 0 + C · 1 + 1 = 0 ⇒ C + 1 = 0 ⇒ C = − 1;

Аналогично, для точек B = (1; 0; 0) и C 1 = (1; 1; 1) получим уравнения:
A · 1 + B · 0 + C · 0 + 1 = 0 ⇒ A + 1 = 0 ⇒ A = − 1;
A · 1 + B · 1 + C · 1 + 1 = 0 ⇒ A + B + C + 1 = 0;

Но коэффициенты A = − 1 и C = − 1 нам уже известны, поэтому остается найти коэффициент B:
B = − 1 − A − C = − 1 + 1 + 1 = 1.

Получаем уравнение плоскости: − A + B − C + 1 = 0, Следовательно, координаты нормального вектора равны n = (− 1; 1; − 1).

Задача. В кубе ABCDA 1 B 1 C 1 D 1 проведено сечение AA 1 C 1 C. Найти нормальный вектор для плоскости этого сечения, если начало координат находится в точке A, а оси x, y и z совпадают с ребрами AB, AD и AA 1 соответственно.

В данном случае плоскость проходит через начало координат, поэтому коэффициент D = 0, а уравнение плоскости выглядит так: Ax + By + Cz = 0. Поскольку плоскость проходит через точки A 1 и C, координаты этих точек обращают уравнение плоскости в верное числовое равенство.

Подставим вместо x, y и z координаты точки A 1 = (0; 0; 1). Имеем:
A · 0 + B · 0 + C · 1 = 0 ⇒ C = 0;

Аналогично, для точки C = (1; 1; 0) получим уравнение:
A · 1 + B · 1 + C · 0 = 0 ⇒ A + B = 0 ⇒ A = − B;

Положим B = 1. Тогда A = − B = − 1, и уравнение всей плоскости имеет вид: − A + B = 0, Следовательно, координаты нормального вектора равны n = (− 1; 1; 0).

Вообще говоря, в приведенных задачах надо составлять систему уравнений и решать ее. Получится три уравнения и три переменных, но во втором случае одна из них будет свободной, т.е. принимать произвольные значения. Именно поэтому мы вправе положить B = 1 - без ущерба для общности решения и правильности ответа.

Очень часто в задаче C2 требуется работать с точками, которые делят отрезок пополам. Координаты таких точек легко считаются, если известны координаты концов отрезка.

Итак, пусть отрезок задан своими концами - точками A = (x a ; y a ; z a) и B = (x b ; y b ; z b). Тогда координаты середины отрезка - обозначим ее точкой H - можно найти по формуле:

Другими словами, координаты середины отрезка - это среднее арифметическое координат его концов.

Задача. Единичный куб ABCDA 1 B 1 C 1 D 1 помещен в систему координат так, что оси x, y и z направлены вдоль ребер AB, AD и AA 1 соответственно, а начало координат совпадает с точкой A. Точка K - середина ребра A 1 B 1 . Найдите координаты этой точки.

Поскольку точка K - середина отрезка A 1 B 1 , ее координаты равных среднему арифметическому координат концов. Запишем координаты концов: A 1 = (0; 0; 1) и B 1 = (1; 0; 1). Теперь найдем координаты точки K:

Задача. Единичный куб ABCDA 1 B 1 C 1 D 1 помещен в систему координат так, что оси x, y и z направлены вдоль ребер AB, AD и AA 1 соответственно, а начало координат совпадает с точкой A. Найдите координаты точки L, в которой пересекаются диагонали квадрата A 1 B 1 C 1 D 1 .

Из курса планиметрии известно, что точка пересечения диагоналей квадрата равноудалена от всех его вершин. В частности, A 1 L = C 1 L, т.е. точка L - это середина отрезка A 1 C 1 . Но A 1 = (0; 0; 1), C 1 = (1; 1; 1), поэтому имеем:

Ответ : L = (0,5; 0,5; 1)



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме