Подпишись и читай
самые интересные
статьи первым!

Радиочастотная идентификация. Tехнология RFID, метки, ридеры и ее применение

Радиочастотная идентификация (РЧИ), или как ее называют за рубежом RFID (Radio Frequency Identification) – это самая современная технология идентификации, предоставляющая существенно больше возможностей по сравнению с другими.
В ее основе лежит технология передачи с помощью радиоволн информации, необходимой для распознавания (идентификации) объектов, на которых закреплены специальные метки, несущие как идентификационную, так и пользовательскую информацию.

Основные преимущества технологии РЧИ (RFID)

  • Не требуется прямая видимость радиочастотной метки , чтобы считывать из нее информацию, поэтому rfid-метка может располагаться внутри упаковки (если она не металлическая), обеспечивая ее скрытность и сохранность
  • Высокая скорость чтения меток , которая может достигать 1000 шт в сек.
  • Возможно практически одновременное чтение большого количества меток с применением функции антиколлизии
  • Возможно изменение информации в метке , если она относится к классу «чтение-запись» (Read/Write)
  • Возможность чтения и записи метки на расстоянии
  • Долговечность . Для операций «только чтение» срок жизни метки практически неограничен
  • Высокая степень безопасности , которая обеспечивается применением уникального идентификатора метки, присваемого на заводе при ее изготовлении, а также шифрованием данных, записываемых в метку
  • Устойчивость к воздействию окружающей среды , поскольку метку всегда можно поместить в любую защитную полимерную оболочку

Из чего состоит RFID система

  • Метки (tag) или транспондеры – устройства, способные хранить и передавать данные. В памяти меток содержится их уникальный идентификационный код. Метки некоторых типов имеют перезаписываемую память
  • Считыватели (reader) – приборы, которые с помощью антенн получают информацию из меток, а также записывают в них данные
  • Антенны используются для наведения электромагнитного поля и получения информации от меток, попавших в это поле
  • Система управления считывателями (middleware) – программное обеспечение, которое формирует запросы на чтение или запись меток, управляет считывателями, объединяя их в группы, накапливает и анализирует полученную с rfid-меток информацию, а также передает эту информацию в учетные системы

Как работает RFID-система

Перед началом работы системы метка должна быть нанесена или закреплена на предмет (объект), который необходимо контролировать. Объект с меткой должен пройти первичную регистрацию в системе с помощью стационарного или переносного считывателя. В контрольных точках учета перемещения объекта необходимо разместить считыватели с антеннами. На этом подготовительная фаза завершена.

Контроль за перемещением объекта будет заключаться в чтении данных метки в контрольных точках, для чего метке достаточно попасть в электромагнитное поле, создаваемое антенной, подключенной к считывателю. Информация из считывателя передается в систему управления и далее в учетную систему, на основании которой формируется учетный документ. При групповом чтении меток данные всех прочитанных меток попадают в один учетный документ, фиксирующий перемещение объектов.

Как устроены RFID-метки

Rfid-Метка представляет собой миниатюрное запоминающее устройство. Она состоит из микрочипа, который хранит информацию, и антенны, с помощью которой метка передает и получает информацию. Иногда метка имеет собственный источник питания (такие метки называют активными), но у большинства меток его нет (эти метки называют пассивными) и энергию для работы получают от наведенного антенной электромагнитного поля и накапливает ее в конденсаторе. В памяти метки хранится ее собственный уникальный номер и пользовательская информация. Когда метка попадает в зону регистрации, эта информация принимается считывателем, специальным прибором способным читать и записывать информацию в метках.

Какие бывают RFID-метки

Технология RFID может быть реализована во многих областях. Для того , чтобы системы, основанные на этой технологии, эффективно работали в любой среде, было разработано множество меток самого различного исполнения. Их условно можно разделить по следующим признакам

1. По энергообеспечению

  • Активные – используют для передачи данных энергию встроенного элемента питания
  • Пассивные – используют энергию, излучаемую считывателем через антенну
  • Полупассивные – такие метки также имеют элемент питания, но он используется только для обеспечения работы микросхемы, а не для связи со считывателем, что существенно продлевает срок жизни батарейки.

2. По операциям чтения-записи

  • "R/O" (R ead O nly – «только чтение») – данные записываются только один раз при изготовлении метки. Такие метки пригодны только для идентификации. Никакую новую информацию в них записать нельзя, и их практически невозможно подделать
  • "WORM" (W rite O nce R ead M any – «однократная запись и многократное чтение») – кроме уникального идентификатора такие метки содержат блок однократно записываемой памяти, которую в дальнейшем можно многократно читать
  • "R/W" (R ead and W rite – «чтение и запись») – такие метки содержат идентификатор и блок памяти для чтения/записи информации. Данные в них могут быть перезаписаны большое число раз.

3. По исполнению меток

  • Без клеевого слоя (инлей или вставка)
  • С клеевым слоем без поверхности для печати
  • С клеевым слоем и с поверхностью для печати
  • Стандартные пластиковые карты
  • Метки в виде кольца
  • Различные виды брелоков
  • В специальном корпусе для особых условий эксплуатации.

Частоты и стандарты

Сегодня RFID -системы используют четыре частотных диапазона: 125-150 кГц, 13,56 МГц, 862-950 МГц и 2,4-5 ГГц. Чем объясняется выбор этих диапазонов частот? Это те частоты, для которых в большинстве стран разрешено вести коммерческие разработки. Для примера отметим, что диапазон 2,45 ГГц – это частоты, на которых работают беспроводные устройства стандарта Bluetooth и Wi-Fi. Для каждого из упомянутых частотных диапазонов действуют свои стандарты со своей степенью проработки. Наиболее общие их характеристики представлены в таблице.


Название диапазона

Рабочая частота

Стандарт

Приложения

Низкие частоты (LF)

ISO 14223
ISO 11784 /11785
ISO 18000-2

Применяются в системах контроля доступа, для идентификации животных, а также достаточно широко используются, например, в автомобильных иммобилайзерах

Высокие частоты (HF)

ISO 14443
ISO 15693
ISO 10373
ISO 18000-3

Применяются в системах контроля доступа, платежных системах, а также для идентификации товаров в складских системах и книг в библиотечных системах

Сверхвысокие частоты (UHF)

860-960 МГц

U-CODE
ISO 18000-6

Отличительной особенность является повышенная дальность и высокая скорость чтения. Областью применения являются системы логистики и учета движения товаров по цепочке поставок.

Отличительной особенность является высокая дальность и высокая скорость чтения

Какие бывают считыватели?

Приборы для чтения и записи данных в метках(считыватели) можно разделить на:

  • Ручные – носимые на руках
  • Мобильные – установленные на транспортных средствах
  • Стационарные – установленные на неподвижных объектах

Ручные считыватели

Как правило, такие считыватели совмещены с терминалами сбора данных. Обладают меньшей дальностью действия (чтения и записи) поскольку ограничены мощностью источника питания. При наличии в терминале сбора данных беспроводной связи может быть постоянный обмен данными с учетной системой. Ручные считыватели способны также записывать данные в метку (например, информацию о произведенной операции).

Мобильные считыватели

Поскольку такие считыватели имеют более мощный источник питания, то дальность и скорость чтения у них больше чем у ручных. При этом они также могут быть оснащены беспроводной связью, обеспечивая работу в режиме реального времени.

Стационарные считыватели

Этот вид считывателей обеспечивают максимально возможные показатели по дальности и быстродействию. Они подключаются к системе по сети Ethernet. Эти считыватели могут работать с антеннами различных типов.

Какие бывают антенны

Антенна является важнейшим элементом RFID – системы. Все выпускаемые антенны можно классифицировать (в зависимости от частоты):

  • По дальности действия (короткого, среднего и дальнего радиуса)
  • По исполнению (настольные, стационарные и портальные)
  • По направлению поляризации (левосторонняя, правосторонняя, двухсторонняя)
  • По скорости работы (обычные, быстродействующие)

Только правильно подобранные и настроенные антенны могут обеспечить бесперебойную работу считывателя с метками, достигая максимально возможных результатов.

Применение rfid технологии

Сфера применения RFID -технологии постоянно расширяется. Основными областями применения технологии радиочастотной идентификации сегодня являются:

  • Складское хозяйство
  • Логистика и управление цепочками поставок от производителя к потребителю в режиме реального времени
  • Идентификация движущихся объектов в реальном масштабе времени (учет автотранспорта, вагонов в движущихся железнодорожных составах)
  • Идентификация автотранспортных средств на стоянках, парковках, автовокзалах
  • Автоматизация идентификации на сборочных конвейерах в промышленном производстве
  • Системы контроля доступа в помещениях и сооружениях
  • Обеспечение пассажиров электронными билетами
  • Экспресс-доставка посылок
  • Обработка и доставка багажа на авиалиниях
  • Автомобильные охранные системы
  • Проверка транзакции платежных систем на достоверность
  • Предотвращение подделки различных категорий товаров
  • Маркировка (идентификация) имущества, документов, библиотечных материалов
  • Автоматизированные автомобильные заправочные станции
  • И др.
На складе с помощью RFID в реальном времени автоматически отслеживается перемещение товаров, существенно ускоряются основные процессы приемки и отгрузки, повышается производительность, надежность и прозрачность операций с одновременным снижением влияния человеческого фактора.
На производстве
с помощью RFID производится учет движения полуфабрикатов и готовой продукции в реальном времени, контролируются технологические операции и качество получаемого продукта. Продукция получает своеобразный «электронный паспорт», что позволяет работать над ее качеством на новом уровне.
В индустрии
потребительских товаров и розничной торговли RFID -системы отслеживают товар на всех этапах цепи поставки, от производителя до прилавка. Товар вовремя выставляется на полку, не залеживается на складе и отправляется в те магазины, где на него более высокий спрос.

В библиотеках
с помощью этой технологии автоматически контролируется все движение книжного фонда. Для этого каждая единица книгафонда должна быть промаркирована и читатели должны получить электронные читательские билеты. Читатель зарегистрировавшись на входе выбирает необходимые ему книги и производит запись их к себе на электронный читательский билет. Незаписанные на читательский абонемент книги невозможно вынести из зала, т.к. считыватели на выходе следят за этим.
Кроме уже существующих способов применения RFID , которые будут совершенствоваться и далее, есть множество областей, готовых принять технологию. Ежедневно появляются сообщения о новых способах применения технологии.

Потенциал применения RFID – огромен .

Радиочастотная идентификация

История RFID меток

Патент США Марио Кардулло (Mario Cardullo ) № 3,713,148 от 1973 («Пассивный радиопередатчик с памятью»), был, по сути, прародителем современной RFID-технологии. Впервые пассивное устройство на отражённой энергии было продемонстрировано в 1971 году властям Нью-Йорка и другим потенциальным покупателям как устройство с 16 битами памяти для взимания пошлины на дорогах. Патент Кардулло покрывает использование радиоволн, света и звука в качестве средства передачи информации.

Оригинальный бизнес-план был представлен инвесторам в 1969 для использования в сфере транспорта (идентификация самоходных машин, автоматическая платёжная система (система взимания пошлины), электронные номерные знаки, электронные платёжные ведомости, вождение машин, мониторинг состояния транспортных средств), в банковском деле (электронные книги проверок, электронные кредитные карты), в сфере безопасности (персональная идентификация, автоматические ворота, наблюдение) и в медицине (идентификация пациента, истории болезни).

Первая демонстрация современных RFID-чипов (на эффекте обратного рассеяния), как пассивных, так и активных, была проведена в Исследовательской Лаборатории Лос Аламоса (англ. Los Alamos Scientific Laboratory ) в 1973 году . Портативная система работала на частоте 915 МГц и использовала 12 битные метки.

Первый патент, связанный собственно с названием RFID, был выдан Чарльзу Уолтону (Charles Walton ) в 1983 году (патент США за № 4,384,288).

Классификация RFID-меток

Существует несколько способов систематизации RFID-меток и систем:

  • По рабочей частоте
  • По источнику питания
  • По типу памяти
  • По исполнению

По источнику питания

По типу источника питания RFID-метки делятся на:

  • Пассивные
  • Активные
  • Полупассивные

Пассивные

RFID-антенна

Пассивные RFID-метки не имеют встроенного источника энергии. Электрический ток , индуцированный в антенне электромагнитным сигналом от считывателя, обеспечивает достаточную мощность для функционирования кремниевого CMOS -чипа, размещённого в метке, и передачи ответного сигнала.

Коммерческие реализации низкочастотных RFID-меток могут быть встроены в стикер (наклейку) или имплантированы под кожу.

На данный момент основная проблема RFID-устройств заключается в том, что для них требуется внешняя антенна, которая по размерам превосходит чип в лучшем случае в 80 раз.

Наименьшая стоимость RFID-меток, которые стали стандартом для таких компаний, как , Target , Metro AG в Германии, составляет примерно 5 центов за метку фирмы SmartCode (при покупке от 100 млн штук) . К тому же, из-за разброса размеров антенн, и метки имеют различные размеры - от почтовой марки до открытки. На практике максимальная дистанция считывания пассивных меток варьируется от 10 см (4 дюймов) (согласно стандарту ISO 14443) до нескольких метров (стандарты EPC и ISO 18000-6), в зависимости от выбранной частоты и размеров антенны. В некоторых случаях антенна может быть изготовлена печатным способом.

Производственные процессы от Alien Technology под названием Fluidic Self Assembly , от SmartCode - Flexible Area Synchronized Transfer (FAST) и от Symbol Technologies - PICA направлены на дальнейшее уменьшение стоимости меток за счёт применения массового параллельного производства. Alien Technology в настоящее время использует процессы FSA и HiSam для изготовления меток, в то время как PICA - процесс от Symbol Technologies - находится ещё на стадии разработки. Процесс FSA позволяет производить свыше 2 миллионов ИС пластин в час, а PICA процесс - более 70 миллиардов меток в год (если его доработают). В этих технических процессах ИС присоединяются к пластинам меток, которые в свою очередь присоединяются к антеннам, образуя законченный чип. Присоединение ИС к пластинам и в дальнейшем пластин к антеннам - самые пространственно чувствительные элементы процесса производства. Это значит, что при уменьшении размеров ИС монтаж (англ. Pick and place ) станет самой дорогой операцией. Альтернативные методы производства, такие как FSA и HiSam, могут значительно уменьшить себестоимость меток. Стандартизация производства (англ. Industry benchmarks ) в конечном счёте приведёт к дальнейшему падению цен на метки при их широкомасштабном внедрении.

Некремниевые метки изготавливаются из полимерных полупроводников. В настоящее время их разработкой занимаются несколько компаний по всему миру. Метки, изготавливаемые в лабораторных условиях и работающие на частотах 13.56 МГц. были продемонстрированы в 2005 году компаниями PolyIC (Германия) и Голландия). В промышленных условиях полимерные метки будут изготавливаться методом прокатной печати (технология напоминает печать журналов и газет), в результате чего они будут дешевле, чем метки на основе ИС. В конечном счёте это может закончится тем, что для большинства сфер применения метки станут печатать так же просто, как и штрих-коды , и они станут такими же дешёвыми.

Активные метки обычно имеют гораздо больший радиус считывания (до 300 м) и объём памяти, чем пассивные, и способны хранить больший объём информации для отправки приёмопередатчиком. В настоящее время, активные метки делают размерами не больше обычной пилюли и продают по цене в несколько долларов.

Полупассивные

Полупассивные RFID-метки, также называемые полуактивными, очень похожи на пассивные метки, но оснащены батарей, которая обеспечивает чип энергопитанием. При этом дальность действия этих меток зависит только от чувствительности приёмника считывателя и они могут функционировать на большем расстоянии и с лучшими характеристиками.

По типу используемой памяти

По типу используемой памяти RFID-метки делятся на:

  • RO (англ. Read Only ) - данные записываются только один раз, сразу при изготовлении. Такие метки пригодны только для идентификации. Никакую новую информацию в них записать нельзя, и их практически невозможно подделать.
  • WORM (англ. Write Once Read Many ) - кроме уникального идентификатора такие метки содержат блок однократно записываемой памяти, которую в дальнейшем можно многократно читать.
  • RW (англ. Read and Write ) - такие метки содержат идентификатор и блок памяти для чтения/записи информации. Данные в них могут быть перезаписаны многократно.

По рабочей частоте

Метки диапазона LF (125-134 кГц)

RFID-метка 125 кГц

Пассивные системы данного диапазона имеют низкие цены, и в связи с физическими характеристиками, используются для подкожных меток при чипировании животных , людей и рыб. Однако, в связи с длиной волны, существуют проблемы со считыванием на большие расстояния, а также проблемы, связанные с появлением коллизий при считывании.

Метки диапазона HF (13,56 МГц)

Системы 13МГц дешевы, не имеют экологических и лицензионных проблем, хорошо стандартизованы, имеют широкую линейку решений. Применяются в платежных системах, логистике, идентификации личности. Для частоты 13,56 МГц разработан стандарт ISO 14443 (виды A/B). В отличие от Mifare 1К в данном стандарте обеспечена система диверсификации ключей, что позволяет создавать открытые системы. Используются стандартизованные алгоритмы шифрования.

На основе стандарта 14443 В разработано несколько десятков систем, например, система оплаты проезда общественного транспорта Парижского региона.

Для существовавших в данном диапазоне частот стандартов были найдены серьёзные проблемы в безопасности: совершенно отсутствовала криптография у дешёвых чипов карты Mifare Ultralight , введённая в использование в Нидерландах для системы оплаты проезда в городском общественном транспорте OV-chipkaart , позднее была взломана считавшаяся более надёжной карта Mifare Classic .

Как и для диапазона LF, в системах, построенных в HF-диапазоне, существуют проблемы со считыванием на большие расстояния, считывание в условиях высокой влажности, наличия металла, а также проблемы, связанные с появлением коллизий при считывании.

Метки диапазона UHF (860-960 МГц)

Метки данного диапазона обладают наибольшей дальностью регистрации, во многих стандартах данного диапазона присутствуют антиколизионные механизмы. Ориентированные изначально для нужд складской и производственной логистики, метки диапазона UHF не имели уникального идентификатора. Предполагалось, что идентификатором для метки будет служить EPC-номер (Electronic Product Code ) товара, который каждый производитель будет заносить в метку самостоятельно при производстве. Однако скоро стало ясно, что помимо функции носителя EPC-номера товара хорошо бы возложить на метку ещё и функцию контроля подлинности. То есть возникло требование, противоречащее самому себе: одновременно обеспечить уникальность метки и позволить производителю записывать произвольный EPC-номер.

Долгое время не существовало чипов, которые бы удовлетворяли этим требованиям полностью. Выпущенный компанией Philips чип Gen 1.19 обладал неизменяемым идентификатором, но не имел никаких встроенных функций по паролированию банков памяти метки, и данные с метки мог считать кто угодно, имеющий соответствующее оборудование. Разработанные впоследствии чипы стандарта Gen 2.0 имели функции паролирования банков памяти (пароль на чтение, на запись), но не имели уникального идентификатора метки, что позволяло при желании создавать идентичные клоны меток.

Наконец, совсем недавно компания NXP выпустила два новых чипа, которые на сегодняшний день отвечают всем выше перечисленным требованиям. Чипы SL3S1202 и SL3FCS1002 выполнены в стандарте EPC Gen 2.0 , но отличаются от всех своих предшественников тем, что поле памяти TID (Tag ID ), в которое при производстве обычно пишется код типа метки (и он в рамках одного артикула не отличается от метки к метке), разбито на две части. Первые 32 бита отведены под код производителя метки и её марку, а вторые 32 бита - под уникальный номер самого чипа. Поле TID - неизменяемое, и, таким образом, каждая метка является уникальной. Новые чипы имеют все преимущества меток стандарта Gen 2.0. Каждый банк памяти может быть защищен от чтения или записи паролем, EPC-номер может быть записан производителем товара в момент маркировки.

В UHF RFID-системах по сравнению с LF и HF ниже стоимость меток, при этом выше стоимость прочего оборудования.

В настоящее время частотный диапазон СВЧ открыт для свободного использования в Российской Федерации в так называемом «европейском» диапазоне - 863-868 МГЦ.

Радиочастотные UHF-метки ближнего поля

Стандарты

Негативное отношение к технологии RFID усугубляется пробелами, существующими во всех нынешних стандартах. Хотя процесс совершенствования стандартов не закончился, во многих прослеживается тенденция скрывать от публики часть команд меток. Например, команда Аутентификация в фирменной технологии MIFARE, использующей стандарт ISO/IEC 14443, после которой метка должна шифровать свои ответы и воспринимать только шифрованные команды, может быть нейтрализована некоторой командой, которую фирма-разработчик держит в секрете. После выполнения этой команды возможно успешно использование ReadBlock , фиктивно зашифрованной на константе (которая используется для подсчёта CRC в стандарте ISO/IEC 14443). Таким образом можно прочитать MIFARE-карточку. Более того, анализируя потребляемый карточкой ток, инженер-схемотехник может прочитать все пароли доступа ко всем блокам MIFARE-карточки (в силу относительной прожорливости EEPROM ячеек и схемотехнической реализации чтения памяти в чипе). Так, в наиболее распространённых RFID-карточках может изначально содержаться закладка.

Часть подозрений в отношении RFID может быть снята выработкой полных и открытых стандартов, отсутствие каковых вызывает подозрения и недоверие к технологии.

Применение меток диапазона СВЧ в Российской Федерации в настоящее время регулируется СанПиН 2.1.8/2.2.4.1383-03, утвержденными Постановлением Главного государственного санитарного врача РФ № 135 от 09.06.2003 г. Несмотря на распостраняемое заблуждение о несоответствии данного оборудования стандартам , при реальных расчётах учитывается напряжение электромагнитного поля и плотность потока, издаваемые оборудованием, а не выходная мощность прибора, как это было установлено в СанПиН 2.2.4/2.1.8.055-96, утративших силу с 30.06.2003 г.; фактические значения для расчета предельно допустимого уровня в реально существующем в России UHF-оборудовании примерно в 10-20 раз, чем установленные санитарно-гигиеническими нормами.

Развитие RFID-рынка

Мировой рынок RFID-систем

По оценке аналитиков Deutche Bank Research , к ёмкость рынка RFID-систем составит 22 млрд евро по сравнению с 1,5 млрд евро в . Один из источников роста - применение RFID-технологий в паспортах и иных удостоверениях. Ещё в 1998 году паспорта со встроенными RFID-чипами начала выдавать своим гражданам Малайзия

Применения

Станция выдачи книг в библиотеке СПБГУ

На текущий момент RFID-технологии применяются в самых разнообразных сферах человеческой деятельности:

  1. Медицина - мониторинг состояния пациентов, наблюдение за перемещением по зданию больницы.
  2. Библиотеки - станции автоматической книговыдачи, быстрая инвентаризация.

В первую очередь, используется следующий функционал RFID:

  • Информация об объекте, его свойствах, качествах и т. п.
  • Информация о положении объекта.

RFID часто используется в системах безопасности магазинов розничной торговли для предотвращения краж.

Стандарты

Основная статья : Стандарты RFID

Международные стандарты RFID, как составной части технологии автоматической идентификации, разрабатываются и принимаются международной организацией ISO совместно с IEC. Подготовка проектов (разработка) стандартов производится в тесном взаимодействии с инициативными заинтересованными организациями и компаниями.

Организации-разработчики стандартов

AIM Global - международная торговая ассоциация, представляющая поставщиков автоматической идентификации и мобильных технологий. Ассоциация активно поддерживает развитие AIM стандартов за счёт собственного Technical Symbology Committee, Global Standards Advisory Groups и группы экспертов RFID, а также через участие в промышленных, национальных (ANSI) и международных (ISO) группах разработок.

В России разработка стандартов в области RFID поручена Ассоциации UNISCAN/GS1 Russia.

EPC Gen2

EPC Gen2 - сокращение от EPCglobal Generation 2 .

Деление меток на классы было принято задолго до появления инициативы EPCglobal , однако не существовало общепринятого протокола обмена между считывателями и метками. Это приводило к несовместимости считывателей и меток различных производителей. В г. ISO/IEC приняла единый международный стандарт ISO 18000, описывающий протоколы обмена (радиоинтерфейсы, англ. air interface ) во всех частотных диапазонах RFID от 135 кГц до 2,45 ГГц. Диапазону УВЧ (860-960) МГц соответствует стандарт ISO 18000-6А/В. С учётом технических проблем, проявлявшихся при считывании меток классов 0 и 1 первого поколения, в 2004 г. специалисты Hardware Action Group EPCglobal создали новый протокол обмена между считывателем и меткой УВЧ диапазона - Class 1 Generation 2. В г. предложение EPC Gen2 с незначительными изменениями было принято ISO/IEC в качестве дополнения С к существующим вариантам А и В стандарта

Особенности

id

Метки Gen 2 выпускаются как с записанным производителем номером, так и без него. Записанный производителем товара номер можно заблокировать так же, как и изначально встроенный.

Антиколлизионный механизм (меток)

Современные метки стандарта Gen 2 используют эффективный антиколлизионный механизм, основанный на развитой технологии «слотов» - многосессионном управлении состоянием меток во время «инвентаризации», - то есть, считывании меток в зоне регистрации. Данный механизм позволяет увеличить скорость считывания-инвентаризации меток до 1500 меток/сек (запись - до 16 меток/сек) при использовании промышленных портальных считывателей, например, компании алгоритм работает гораздо быстрее алгоритма, используемого в Gen1, так как в первом случае считыватель побитно перебирает до 64-х бит, а во втором работает теория вероятности и имеется механизм регулировки.

Антиколлизионный механизм (считывателей)

Кроме того, Gen 2 метки позволяют эффективно использовать в перекрывающихся и близких зонах несколько считывателей одновременно (технология англ. Dense Reader Mode ) за счёт разнесения друг от друга частотных каналов считывателей.

Цена

Метки стандарта Gen2 в настоящее время уже существенно дешевле меток предыдущего поколения, что также делает их использование предпочтительным, а оборудование (считыватели) первого поколения в большинстве случаев требуют для работы с новыми стандартами лишь перепрограммирования встроенной программы (перепрошивки).

Пароли

Как и метки предыдущего стандарта , Gen2 обладают возможностью установки 32х-битного access-пароля. Кроме того, для каждой метки возможна установка килл-пароля (англ. "kill" password ), после введения которого метка навсегда прекратит обмен информацией со считывателями.

ISO 15693

В настоящее время в качестве международного стандарта в области RFID выступает ISO 15693. Данный стандарт описывает принцип передачи информации, временные параметры передачи сигналов в RFID-системах и т. д.

Примечания

  1. Раздел сайта, посвящённый RFID (англ.) . EFF . Проверено 14 октября 2008.
  2. Пересказ содержания Обращения Священного Синода Русской Православной Церкви к органам власти стран Содружества Независимых Государств и Балтии от 6 октября 2005 года (рус.) . Официальный сайт Московской Патриархии (17 октября 2005 г.). Проверено 14 октября 2008.
  3. История технологии (рус.) . Scale Company. Проверено 14 октября 2008.
  4. Hitachi µ-Chip (рус.) . Проверено 14 октября 2008.
  5. Hitachi разработала самые маленькие чипы RFID (рус.) . CNews (21 февраля 2007). Проверено 14 октября 2008.
  6. Mark Roberti A 5-Cent Breakthrough (англ.) . RFID Journal. Проверено 14 октября 2008.
  7. Locating, Responding, Optimizing in Real Time. RFID System for the Locating (англ.) .
  8. Киви Берд Маленькие секреты больших технологий (рус.) . Компьютерра (17 февраля 2008 года). Проверено 13 февраля 2009.
  9. Киви Берд Ясно, что небезопасно (рус.) . Компьютерра (30 марта 2008 года). Проверено 13 февраля 2009.
  10. Киви Берд И грянул гром (рус.) . Компьютерра (28 марта 2008 года). Проверено 13 февраля 2009.
  11. Иван Боенко Уникальность или универсальность? (рус.) . журнал "Information Security" №3 за апрель-май 2008. Проверено 13 февраля 2009.
  12. Министерство связи и массовых коммуникаций Российской Федерации 28 апреля под председательством Министра информационных технологий и связи Российской Федерации Л.Д. Реймана прошло заседание Государственной комиссии по радиочастотам (ГКРЧ) (рус.) . Проверено 16 февраля 2009.

Технология RFID (radio frequency identification) является одним из способов автоматизации торговли, производства, логистики. Ее суть заключается в идентификации объектов при помощи RFID меток.

Любая RFID-система состоит из считывающего устройства (считыватель или ридер) и транспондера (он же RFID-метка, иногда также применяется термин RFID-тег).

Большинство RFID-меток состоит из двух частей.

Первая - интегральная схема (ИС) для хранения и обработки информации, модулирования и демодулирования радиочастотного (RF) сигнала и некоторых других функций.

Вторая - антенна для приёма и передачи сигнала.

Эти метки могут быть представлены в разном виде:

  • 1. радиочастотные этикетки (RFID этикетки);
  • 2. метки, встроенные в пластиковый или металлический корпус;
  • 3. RFID наклейки разнообразных форм;
  • 4. бесконтактные RFID карты.

В магазинах и складских помещениях RFID этикетки используются с целью автоматизировать и систематизировать процессы торговли и управления складом. Здесь принцип работы технологии RFID состоит в следующем. К каждому товару (или упаковке с товарами) прикрепляется радиочастотная этикетка, в которой содержатся все данные о товаре, такие как идентификационный номер товара, наименование, цена, количество на складе и прочая ценная информация.

Эти данные вносятся через компьютер, а считываются с помощью специальных сканирующих устройств. Помимо этого, RFID этикетка является датчиком, который сработает на противокражной системе магазина, если товар не был заранее оплачен. Сканирующие устройства располагаются в необходимых местах (обычно на кассах) и считывают данные с радиочастотных этикеток. Затем информация направляется в компьютер, где обрабатывается и выдается в удобном виде для пользователя.

Применение RFID технологии позволяет работникам магазинов и складов всегда быть в курсе, имеется ли в наличии товар, маркированный RFID наклейкой или меткой, где находится, в каком количестве, сколько необходимо заказать и т. п.

Также возможна функция оповещения о том, что такой-то товар заканчивается на складе и даже функция самостоятельного оформления заказа этого товара у поставщика.

В зависимости от расположения источника питания различают пассивные и активные RFID метки. Пассивными называются метки, не оснащенные собственным источником питания. Они получают необходимый для обработки информации заряд энергии из электромагнитного сигнала, исходящего от сканирующего устройства.

Поэтому дальность считывания пассивных RFID меток определяется исключительно параметрами ридера. К их преимуществам относятся относительно низкая стоимость и длительный эксплуатационный период.

Активные RFID метки содержат источник питания в собственной конструкции. Расстояние их считывания не зависит энергетических параметров сканирующего устройства.

Таким образом, дальность сканирования активных меток больше примерно в 2-3 раза, чем у пассивных. Еще одним важным их преимуществом является высокая допустимая скорость, с которой RFID метка движется рядом с ридером. Это особенно актуально для противокражных систем. Однако при этом активные метки значительно дороже и габаритнее пассивных.

Программное обеспечение RFID технологии позволяет в любое время ознакомиться со статистикой продаж и отследить передвижение конкретного товара на складе.

Считыватели, расположенные на входах в торговое помещение, предотвращают кражу товаров, если RFID наклейка или метка не была удалена на кассе при оплате. Дополнительно такая система предоставляет статистику товаров, которые чаще всего хотят украсть из магазина, а также позволяет посчитать убытки от краж.

Помимо торговой отрасли, технология RFID успешно используется в сфере контроля и безопасности организаций. Здесь средством идентификации являются RFID карты - бесконтактные карты с памятью. С их помощью можно создать бесконтактный контрольный пункт на входе в помещение, систему учета и мониторинга рабочего времени сотрудников и многое другое.

Например, можно настроить систему информационной безопасности таким образом, чтобы персонал не смог покидать помещение офиса, оставляя свою RFID карту в компьютере.

В логистике существуют примеры комплексных разработок с использованием RFID - для морских контейнерных перевозок. Каждый контейнер оснащается меткой RFID, содержащей информацию о грузе и скомбинированной с датчиками (например открытия, содержания кислорода и т. п.) и передающей данные на центральную станцию сбора данных на борту контейнеровоза, которая в свою очередь передаёт данные через спутниковую связь. Таким образом владелец груза получает возможность отслеживать местоположение и сохранность груза.

Технология RFID похож по функциям на штрих-код, но обладает существенными преимуществами в эксплуатации и позволяет использовать более сложные, защищённые протоколы криптографическими средствами.

Технология RFID (Radio Frequency Identification — радиочастотная идентификация) основанна на использовании радиочастотного электромагнитного излучения. RFID применяется для идентификации и учета объектов.

RFID — технология идентификации, которая предоставляет большие возможности. Наиболее распространенные RFID-метки, как и многие штрих-коды, представляют собой самоклеящиеся этикетки. Но если на штрих-коде информация хранится в графическом виде, то на метку данные заносятся и считываются при помощи радиоволн.

Как это работает

RFID-метка - миниатюрное запоминающее устройство. Она состоит из микрочипа, который хранит информацию, и антенны, с помощью которой метка передает и получает данные. Иногда RFID-метка имеет собственный источник питания (активная), но большинство меток во внешнем питании не нуждаются (пассивная).

В памяти RFID-метки хранится уникальный номер и информация. Когда метка попадает в зону регистрации, эта информация принимается RFID-считывателем.

Для передачи данных пассивные RFID-метки используют энергию поля считывателя. Накопив необходимое количество энергии, метка начинает передачу. Дистанция регистрации пассивных меток 0,05 - 8 метров, в зависимости от типа RFID-считывателя и архитектуры метки.

Где это применяется

Сфера применения RFID постоянно расширяется. Технология востребована в отраслях, где требуется контроль перемещения объектов, интеллектуальные решения автоматизации, способность работать в жестких условиях эксплуатации, безошибочность, скорость и надежность.

На производстве с помощью RFID ведется учет сырья, контролируются технологические операции, обеспечиваются принципы JIT/JISи FIFO. RFID-решения на производстве обеспечивают высокий уровень и стабильность качества продукции.

На складе с помощью RFID в реальном времени отслеживается перемещение товаров, ускоряются процессы приема и отгрузки, повышается надежность и прозрачность операций и снижается влияние человеческого фактора. RFID-решения на складе обеспечивает защиту от воровства и хищений продукции.

В индустрии потребительских товаров и розничных продаж RFID-системы отслеживают товар на этапах поставки, от производителя до прилавка. Товар вовремя выставляется на полку, не залеживается на складе и отправляется в те магазины, где на него высокий спрос.

В библиотеке RFID помогает найти в хранилище и выдать читателю книги, предотвратить хищения. Исчезают очереди на выдаче. Сокращается время подбора и поиска нужного издания, упрощается инвентаризация.

RFID-метки применяются в маркировке шуб и других меховых изделий. Каждое изделие маркируется Контрольным (идентификационным) знаком (КиЗ) со встроенной в него RFID-меткой.

Множество областей бизнеса и повседневной жизни можно улучшить благодаря RFID-технологии. Потенциал применения RFID огромен.

Компоненты RFID-системы

  • RFID-метки — устройства, способные хранить и передавать данные. В памяти меток содержится уникальный идентификационный код. У некоторых RFID-меток память может перезаписываться.
  • RFID-считыватели — приборы, которые читают информацию с меток и записывают в них данные. Подключаются к учетной системе и работают автономно.
  • Учетная система — программное обеспечение, которое накапливает и анализирует полученную с меток информацию и связывает все элементы в единую систему. Современные учетные системы (программы семейства 1С, корпоративные информационные системы — MS Axapta, R3Com) совместимы с RFID-технологией и не требуют специальной доработки.

Преимущества радиочастотной идентификации

  1. Данные RFID-метки перезаписываются и дополняются много раз, тогда как данные на штрих-коде неизменны — они записываются сразу при печати.
  2. RFID-считывателю не требуется прямая видимость метки, чтобы считать ее данные. Взаимная ориентация метки и считывателя не играет роли. Метки читаются через упаковку, что делает возможным скрытое размещение. Для чтения данных метке достаточно попасть в зону регистрации, в том числе при перемещении на высокой скорости. Устройству считывания штрих-кода необходима прямая видимость штрих-кода для чтения.
  3. RFID-метка считывается на значительно большем расстоянии, чем штрих-код. В зависимости от модели метки и считывателя радиус считывания составляет до нескольких десятков метров.
  4. . RFID-метка может хранить значительно больше информации, чем штрих-код. До 10 000 байт могут храниться на микросхеме площадью в 1 квадратный сантиметр, а штриховые коды вмещают 100 байт (знаков) информации, для воспроизведения которых понадобится площадь размером с лист формата А4.
  5. Промышленные RFID-считыватели одновременно считывают десятки RFID-меток в секунду, используя антиколлизионную функцию. Устройство считывания штрих кода может единовременно сканировать только один штрих-код.
  6. Для автоматического считывания штрихового кода, комитетами по стандартам (в том числе EAN International) разработаны правила размещения штрих-кодов на товарной и транспортной упаковке. К радиочастотным меткам эти требования не относятся. Единственное условие — нахождение метки в зоне действия RFID-считывателя.
  7. RFID-метки обладают повышенной прочностью и сопротивляемостью жестким условиям среды, а штрих-код легко повреждается (например, влагой или загрязнением). В тех сферах, где один и тот же объект используется много раз (например, при идентификации паллет или возвратной тары), радиочастотная метка - лучшее средство идентификации, так как не требует размещение на внешней стороне упаковки. Пассивные RFID-метки неограничены сроком эксплуатации.
  8. RFID-метка используется не только как хранитель информации, это интеллектуальное устройство широкого спектра применения с уникальным идентификатором. У штрих-кода нет интеллекта и он просто хранит данные.
  9. Неизменяемое число-идентификатор, присваиваемое метке при производстве, гарантирует защиту меток от подделки. Данные на метке легко шифруются. Как цифровое устройство, радиочастотная метка при необходимости защищается паролем и зашифровывается. В одной метке можно одновременно хранить открытые и закрытые данные.

Что нужно помнить при внедрении RFID

При работе с радиочастотной идентификацией нужно учитывать некоторые ограничения: относительно высокая стоимость, невозможность размещения под металлическими и экранирующими поверхностями, взаимные коллизии.

Относительно высокая стоимость RFID-меток. Цена пассивной RFID-метки начинается с 0,15 доллара (при приобретении свыше 1 000 000 шт.) до 3 долларов (при приобретении 1 шт.). В случае с метками защищенного исполнения (или на металл) эта цена достигает 7 долларов и выше. Таким образом, стоимость RFID-меток выше стоимости этикеток со штриховым кодом. Использование радиочастотных меток целесообразно для защиты дорогих товаров от краж или для сохранности изделий, переданных на гарантийное обслуживание. В логистике и транспортировке грузов стоимость радиочастотной метки незначительна по сравнению со стоимостью содержимого контейнера, поэтому использование радиочастотных меток оправдано на упаковочных ящиках, паллетах и контейнерах.

Возможное экранирование при размещении на металлических поверхностях. RFID-метки подвержены влиянию металла (это касается упаковок определенного вида — металлических контейнеров или упаковки жидких пищевых продуктов, запечатанных фольгой). Это не исключает применение RFID, но приводит к необходимости использования меток, разработанных специально для установки на металлические поверхности или к нестандартным способам закрепления меток на объекте.

Эксперты прогнозируют, что в самое ближайшее время начнется массовое коммерческое использование систем радиочастотной идентификации - RFID (Radio Frequency IDentification) на предприятиях оборонной и автомобильной промышленности, в торговле и логистике. Ожидается, что метки радиочастотной идентификации станут обязательным атрибутом самых разнообразных изделий. Необходимость сбора, обработки и представления данных для систем радиочастотной идентификации инициирует создание новой и довольно масштабной отрасли. Параллельно должен сформироваться рынок считывателей меток и другого вспомогательного оборудования. Уже в ближайшем будущем RFID-чипы различной степени сложности найдут применение в здравоохранении (мониторинг состояния пациентов), строительстве (управление проектами и оборудованием), на транспорте (отслеживание местонахождения багажа и пассажиров в аэропортах) и других областях.

Как известно, практически любая технология в своем жизненном цикле проходит три периода. Сначала бывает просто много шума и предсказаний по поводу того, к чему эта технология приведет; затем начинается ее активное внедрение. На этом этапе о технологии говорят еще больше, однако отзывы часто бывают достаточно критическими, в ней видят угрозу сложившемуся порядку вещей. И, наконец, в зависимости от результатов второго этапа начинается третий - повсеместное применение технологии. Изобретенная довольно давно технология RFID сегодня вступает в самую интересную фазу - вторую. Информация о проектах, использующих технологию радиометок, приходит нынче отовсюду. Идею отличает простота, почти граничащая с гениальностью: для идентификации товара (и не только товара) предлагается применять микроскопические чипы со встроенным радиопередатчиком. Они запитываются от энергии принятого сигнала, что позволяет обходиться без громоздких батарей. Для считывания информации с чипа достаточно поднести к нему на определенное расстояние (от нескольких сантиметров до нескольких метров) активный сканер.

В перспективе ожидается, что правительства по всему миру начнут заменять бумажные идентификационные документы цифровыми. Новые средства станут использоваться в паспортах, удостоверениях личности, банковских и кредитных картах и будут включать расширенный набор биометрических данных. Это должно сократить кражи информации, но первоочередной и реальной пользой от них станет, скорее всего, ускорение идентификации в пассажиропотоках. В наше время, когда многие компании называют свои технологии революционными, непросто определить, какая из этих новейших технологий реально повлияет на нашу жизнь. Однако можно угадать перспективы технологий, вокруг которых собираются концерны и ассоциации таких игроков рынка высоких технологий, как Intel, IBM, Philips, Texas Instruments (и более ста других компаний). Впрочем, технология радиочастотной идентификации сегодня развивается не только крупными, но и небольшими научными центрами высокотехнологичных компаний.

Еще в прошлом году компания IDC обнародовала прогноз, согласно которому к 2012 г. распространение коммуникационных устройств, включая радиометки RFID, приведет к гигантскому росту объема информации, циркулирующей в сетях. Причем большая часть этой информации будет передаваться с периферии сетей на серверы - т. е. в направлении, противоположном сегодняшнему. Появятся и специализированные беспроводные "ячеистые" сети (mesh networks), которые позволят органам власти в крупных городах контролировать состояние оборудования и различных объектов на значительной площади. Все эти изменения вызовут потребность в такой аппаратуре, как системы хранения данных, управления контентом и безопасности. По данным исследовательских компаний, уже в прошлом году производители RFID-меток получили доходы около 300 млн долл. При этом на сегодняшний день объем рынка RFID оценивается в 700 млн долл., а к 2007 г. общий объем продаж и услуг на нем должен достичь 2 млрд долл.

История RFID

Некоторые еще и сегодня полагают, что первый образец RFID-устройства был создан русскими в 1945 г. - разумеется, для разведывательных целей. К сожалению, это не так. Просто именно в это время было создано пассивное подслушивающее устройство, которое к проблемам радиочастотной идентификации отношения, в общем-то, никакого не имело.

Тем не менее первенство в разработке RFID-технологии оспаривают сегодня многие. Считается, что ключевую роль в нынешнем массовом увлечении RFID сыграл исследовательский центр Auto-ID, организованный при Массачусетском технологическом институте (MIT) в октябре 1999 г. Этому событию предшествовал год напряженных поисков, последовавших за созданием системного подхода к автоматической идентификации объектов.

По другим данным, идея пассивных электронных запоминающих устройств-меток стала одной из причин образования в 1969 г. компании под названием Communications Services Corporation, или ComServ. В 1973 г. она получила патент на "небольшое портативное устройство, которое легко спрятать, а в случае необходимости прикрепить или вмонтировать в различные объекты". В качестве памяти инженеры использовали ферритовые кольца, позволившие им создать нечто не слишком портативное по нынешним меркам, но способное запомнить до 16 бит данных. Изобретение демонстрировалось в различных транспортных и правительственных организациях. Было даже выдвинуто предложение использовать систему для организации противоугонной службы для автотранспорта. Все тщетно - даже сегодня многие сомневаются в экономической эффективности радиометок, а в семидесятых никто не хотел даже прислушаться к этой идее.

В другом документе утверждается, что первыми предпосылками к созданию радиометок стала работа Харри Стокмана Communication by Means of Reflected Power, опубликованная в 1948 г. и описывающая коммуникационное устройство, функционирующее только под воздействием внешнего радиоизлучения. Конечно, в истории нашлось место и для первых известных примеров применения методики: система опознавания "свой-чужой" в авиации и однобитные противоугонные устройства EAS (Electronic Article Surveillance).

В 80-х годах из состава Лос-Аламосской лаборатории, участвовавшей в разработке концепции, выделились компании Identronix и Amtech. А с 1987 г. начали появляться сведения о коммерческих реализациях RFID. Первая в мире инсталляция подобной системы была осуществлена в Норвегии на железной дороге, затем последовал аналогичный проект в США.

В 90-е годы XX века началось активное применение радиосистем для оплаты дорожных сборов на скоростных магистралях. Автомобили получили возможность пересекать въездные терминалы, не снижая скорости. Бесконтактные средства оплаты появились в США на дорогах Оклахомы, Канзаса и Джорджии, а также в районе Хьюстона. Все они базировались на единой спецификации, названной Title 21. Несколько северо-восточных регионов США сформировали группу E-Z Pass Interagency Group, занявшуюся вопросами стандартизации RFID-методик для автоматизации взимания платы за проезд. Корпорация Texas Instruments (http://www.ti.com) создает TIRIS - Texas Instruments Registration Identification System (затея с TIRIS привела ныне к образованию подразделения компании TI RFID). И, наконец, наступает решающий, переломный момент, когда инженеры впервые смогли интегрировать приемопередатчик радиоволн в микросхему, изготовленную по стандартному КМОП-процессу. Это позволило объединить на одной подложке все компоненты, необходимые для функционирования радиометки, и открыло новые возможности для ее дальнейшей миниатюризации.

Как бы там ни было, но, по официальной версии, начало современной истории RFID было положено учеными из MIT, которые занялись разработкой стандартов и технологий, необходимых для широкого применения технологии на практике. Они впервые задались вопросом снижения стоимости микросхем. Вскоре к ним присоединился Кевин Эштон из лондонского подразделения Procter & Gamble, где он трудился в качестве помощника брэнд-менеджера. Именно ему удалось вызвать интерес к радиометкам у крупных корпоративных спонсоров. Группа обратилась за поддержкой в Uniform Code Council, глобальную организацию, занимающуюся системами маркировки товаров, и получила ее. В 2000 г. филиал центра появился в Кембриджском университете; центры поддержки радиометок открываются при университетах Китая, Японии, Швейцарии, Австралии.

Примерно год назад все наработки из Auto-ID были переданы в организацию EPCglobal (http://www.epcglobalinc.org), детище EAN International и Uniform Code Council. EPC расшифровывается как Electronic Product Codes, что достаточно ясно указывает на характер работы организации. Штрих-код во всех его ипостасях предполагается заменить на соответствующие электронные эквиваленты в мире радиометок. В частности, к задачам EPCglobal относится разработка стандартов передачи данных из RFID-считывателей в различные приложения, а также стандартов их обмена между приложениями, управляющими цепочками поставок. Это должно упростить электронные транзакции, происходящие между ERP-системами двух компаний, ведущих товарообмен. Стандарты будут определять, как связующее ПО должно обрабатывать полученные RFID-считывателем данные при поступлении товаров на склад и передавать эти данные в корпоративное приложение.

Бесконтактная идентификация объектов

Как известно, главное в работе системы автоматизации заключается в том, чтобы информация была абсолютно достоверна. Ведь даже на поиск и отсеивание неверно введенной информации в больших массивах данных придется затратить немало времени и средств, не говоря уже о прямых убытках, к которым может привести неадекватное решение, принятое на ее основе. Технологии бесконтактной идентификации наиболее полно соответствуют всем требованиям компьютерной системы управления, где требуется распознавание и регистрация объектов и прав в реальном масштабе времени. Под бесконтактной идентификацией обычно подразумевают возможность надежно распознавать объекты по индивидуальным естественным или искусственно присвоенным им признакам без непосредственного контакта с ними.

Сама по себе идея автоматизированного распознавания объектов не нова. Известны как минимум пять разновидностей идентификации:

  • оптическая: системы, основанные на штрих-кодах, распознавании символов;
  • магнитная: магнитная полоса, распознавание меток, нанесенных магнитными носителями;
  • радиочастотная идентификация (RFID) и передача данных: пластиковые смарт-карты со встроенной микросхемой, радиометки (теги);
  • биометрическая: распознавание отпечатков пальцев, сканирование рисунка радужной оболочки глаза;
  • акустическая: идентификация по звуковым параметрам (голосу).

Для радиочастотного распознавания служат закрепленные за объектом специальные метки, несущие идентификационную и другую информацию. По сравнению с перечисленными выше методами RFID-технологии имеют существенные преимущества:

  • для RFID не нужен механический или оптический контакт;
  • RFID-метки читаются быстро и точно, обеспечивая практически 100%-ную идентификацию;
  • RFID-метки могут использоваться даже в агрессивных и высокотемпературных средах, читаться через грязь, краску, пар, воду, пластмассу, древесину (последние разработки позволяют использовать их даже на поверхности и в толще металла);
  • у пассивных RFID-меток, не имеющих источника питания, фактически не ограничен срок эксплуатации;
  • RFID-метки несут большое количество информации и могут активно взаимодействовать с внешними системами, поскольку многие из них допускают не только чтение, но и запись информации;
  • за счет возможности использования различных систем шифрации RFID-метки практически невозможно подделать;
  • варианты геометрии и дизайна метки легко адаптируются к характеристикам носителя и требованиям системы контроля;
  • существует возможность использования RFID-идентификации для объектов, находящихся на больших расстояниях от считывателя (десятки метров) и движущихся со скоростями до 300 км/час.

RFID-системы применяются в самых разных случаях, когда требуется оперативный и точный контроль, отслеживание и учет многочисленных перемещений различных объектов. Перечислим только наиболее типичные применения. Одно из них - электронный контроль за доступом и перемещениями персонала на территории предприятий. Далее, это управление производством, товарными и таможенными складами (в особенности крупными), магазинами, выдачей и перемещением товаров и материальных ценностей. На транспорте RFID-системы могут обеспечить контроль, планирование и управление движением, интенсивностью графика и выбор оптимальных маршрутов; на общественном транспорте они служат для управления движением, оплаты проезда и оптимизации пассажиропотоков. На их базе можно создавать системы электронных платежей для всех видов транспорта, организующие автоматический сбор данных и при необходимости начисление оплаты на железных дорогах, платных автомобильных трассах, на грузовых станциях и терминалах, платных автостоянках. Кроме того, RFID-системы подходят для обеспечения безопасности (в комплексе с другими техническими средствами аудио- и видеоконтроля), включая защиту и сигнализацию на транспортных средствах.

Как это работает

Системы RFID обычно состоят из трех основных компонентов: считывателя, транспондера (обычно называемого меткой или тегом, от англ. tag) и компьютерной системы обработки данных.

Считыватель (рис. 1) имеет приемопередающее устройство и антенну, которые посылают сигнал к тегу и принимают ответный; микропроцессор, который проверяет и декодирует данные; а также память, которая сохраняет данные для последующей передачи, если это необходимо. Основные компоненты тега (рис. 2) - интегральная схема, управляющая связью со считывателем, и антенна. Чип содержит память, которая хранит идентификационный код или другие данные. Тег обнаруживает сигнал от считывателя и начинает передавать данные, сохраненные в его памяти, обратно в считыватель.

Рис. 2. RFID-тег.

Нет никакой потребности в контакте или прямой видимости между считывателем и тегом, поскольку радиосигнал легко проникает через неметаллические материалы. Таким образом, теги даже могут быть скрыты внутри тех объектов, которые подлежат идентификации.

Теги бывают активными и пассивными. Активные теги работают от присоединенной или встроенной батареи, они требуют меньшей мощности считывателя и, как правило, имеют большую дальность чтения. Пассивная метка функционирует без источника питания, получая энергию из сигнала считывателя. Пассивные метки меньше и легче активных, менее дороги, имеют фактически неограниченный срок службы. Заметим также, что активные и пассивные теги бывают следующих типов: только для чтения, с чтением-записью и однократно записываемые, данные в которые могут быть занесены пользователем.

Физические принципы (по крайней мере, для большинства частотных диапазонов) напоминают работу трансформатора или системы связанных контуров. Как известно, если взять две катушки и разместить их не очень далеко друг от друга, то они будут оказывать друг на друга взаимное влияние. Считыватель содержит генератор высокой частоты, который запитывает его антенну. За счет наличия электромагнитной связи между антенной считывателя и антенной идентификатора в последней наводится переменное напряжение, величина которого зависит от конструктивного исполнения и расстояния между тегом и считывателем. Наведенное напряжение используется для питания микросхемы идентификатора. Именно она модулирует напряжение в антенне. За счет связи антенн модуляция появляется в антенне считывателя и поступает на его микросхему. По такому принципу работали первые пассивные R/O (Read Only - только для чтения) идентификаторы и считыватели. Затем были созданы идентификаторы, способные не только передавать информацию считывателю, но и получать ее для целей программирования (записи информации в энергонезависимую память). С точки зрения основных принципов построения RFID-системы в считывателе появился модулятор, который модулировал излучаемую считывателем несущую, а в идентификаторе - детектор и перепрограммируемая энергонезависимая память, в которую записывалась передаваемая считывателем информация. При такой технологии идентификаторы называются R/W (Read/Write - чтение и запись). Из принципа работы этой пары устройств однозначно следует вывод: чем больше требуемая дальность считывания, тем больших размеров будет считыватель и тем выше должна быть мощность его излучения.

RFID-теги сегодня, в зависимости от частотного диапазона работы, делятся на четыре категории:

  • низкочастотные (125 и 134 кГц);
  • высокочастотные (13,56 МГц);
  • УКВ (800-900 МГц)
  • "микроволновые" (2,45 ГГц).

Естественно, что в каждом из частотных диапазонов RFID-системам присущи вполне конкретные особенности, которые нагляднее всего иллюстрируются графиками, приведенными на рис. 3. Следовательно, для каждого из диапазонов используются свои методы кодирования сигналов в паре считыватель - идентификатор, свои скорости передачи и алгоритмы разрешения коллизий. Механизм антиколлизий используется для того, чтобы при одновременном нахождении в поле считывателя нескольких идентификаторов можно было выбрать для диалога только один, который необходим в данный момент времени. Для каждого из упомянутых частотных диапазонов действуют свои стандарты со своей степенью проработки (см. таблицу).

Рис. 3. Зависимость параметров RFID от частоты.

Стандарты для частотных диапазонов

УКВ и "микроволновые" RFID-теги используются там, где требуются большое расстояние и высокая скорость чтения; это, например, контроль железнодорожных вагонов, автомобилей, системы сбора отходов. Например, считыватели устанавливают на воротах или шлагбаумах, а транспондер закрепляется на ветровом или боковом стекле автомобиля. За счет большой дальности действия возможна безопасная установка считывателей вне пределов досягаемости людей. Системы высокой частоты эффективны там, где требуется передавать большие объемы данных. Низкочастотные RFID-теги находят широкое применение там, где допустимо небольшое расстояние между объектом и считывателем. Обычное расстояние считывания составляет 0,5 м, а для тегов, встроенных в маленькие объекты, дальность чтения, как правило, еще меньше - около 0,1 м. Большая антенна считывателя может в какой-то мере компенсировать малую дальность действия небольшого тега, но излучение высоковольтных линий, моторов, компьютеров, ламп и т. п. мешает ее работе. Так, большинство систем управления доступом, управления складами и производством, бесконтактные карты используют низкую частоту.

RFID и корпоративные сети

Весной 2005 г. Cisco Systems (http://www.cisco.com) представила отчет компании IDC, в котором прогнозируется, что широкое внедрение технологии радиочастотной идентификации окажет значительное влияние на развитие корпоративных сетей. Успех внедрения данной технологии будет во многом зависеть от возможностей интеллектуальной и безопасной передачи RFID-информации вплоть до границ сети. Документ также указывает на то, что компаниям необходимо обеспечить готовность сетей к выполнению задач в масштабных RFID-проектах еще до начала их реализации.

В отчете IDC "Планирование внедрения: влияние технологии RFID на сети", подготовленном по поручению Cisco и основанном на опросах представителей ряда компаний, уже использующих технологию RFID в сфере розничных продаж и логистики, сообщается, что степень влияния данной технологии на работу корпоративных сетей зависит не только от количества используемых электронных ярлыков, но и от объема данных, которые способен хранить каждый ярлык, а также от количества циклов сканирования ярлыка за время перемещения продукта или выполнения операций с ним.

По мнению экспертов, расширение RFID-системы неизбежно, поскольку ее внедрение на протяжении всей логистической цепочки - основное условие реализации преимуществ этой системы. Организациям важно оценить влияние RFID на сетевую инфраструктуру еще до внедрения системы и обеспечить ее масштабируемость с самого начала. Изменение структуры сети в ходе эксплуатации станет сложной и дорогостоящей задачей.

Кроме того, как показывает анализ, сети масштаба предприятия с поддержкой RFID должны быть снабжены функциями интеллектуальной передачи и хранения данных на границах сети, а также интегрированными средствами управления и безопасности на всех уровнях сетевой инфраструктуры - от RFID до уровня бизнес-процессов. Компания Cisco, сотрудничающая с Европейским центром развития технологии RFID и содействующая продвижению стандартов RFID путем участия в отраслевом консорциуме EPCglobal, уже сейчас предлагает все эти функции, реализованные в инфраструктуре RFID Ready Network - высокоинтегрированной проводной/беспроводной сети, способной идентифицировать трафик электронных кодов продуктов (EPC) с тем, чтобы обеспечить его приоритетность на любом участке сети.

Как отмечают специалисты Cisco, масштабируемые, надежные, высокопроизводительные сети корпорации поддерживают специфику использования и перемещения информации в организациях. Организация доступа к этой информации для всего предприятия упрощает работу логистической цепочки, что важно для розничной торговли, государственных организаций и промышленных компаний. Благодаря сетям Cisco предприятия розничной торговли могут более оперативно реагировать на рыночные изменения, точнее отслеживать активы, повышать адаптивность и строить высокоэффективные, надежные, оперативные цепочки поставок, основанные на технологии RFID.

Инициативы IBM

Как результат объявленной прошлой осенью инициативы, предусматривавшей инвестирование 250 млн долл. в технологию RFID, нынешним летом корпорация IBM (http://www.ibm.com) представила новые услуги, ПО и технологии, направленные на ускорение внедрения методов радиочастотной идентификации. В частности, она объявила о намерении выйти на рынок принтеров RFID-меток, выпустив принтер с поддержкой RFID, сокращающий затраты заказчиков и повышающий эффективность текущей деятельности. Поскольку новый RFID-принтер способен печатать как традиционные штрих-коды, так и RFID-метки, с его помощью заказчикам, включая небольшие и средние компании, будет проще перейти от штриховых кодов к RFID-меткам.

Принтер, в дополнение к которому предлагаются услуги технического сопровождения и службы технической поддержки, способен передавать информацию о движении товаров в сети компании, обеспечивая ее внесение в базы данных товарных запасов, доставку и отслеживание заказов. Для ускорения обработки и повышения точности информации в цепочке поставок в принтере Infoprint 6700 R40 используется микропроцессор IBM POWER, отвечающий за надежную и точную передачу информации на каждую RFID-метку. Принтер также способен распознавать ненадежно работающие RFID-метки и помечать их как сбойные во избежание дорогостоящих ошибок доставки.

Вклад Printronix

Стоит отметить, что IBM продолжает использовать технологию корпорации Printronix (http://www.printronix.com). Как известно, последняя основной упор делает на продвижение оборудования, предназначенного для печати RFID-этикеток (рис. 4). В Printronix разработали целое семейство продуктов SmartLine RFID. В него вошли: многопротокольный принтер интеллектуальных этикеток SL5000e MP; инструментарий разработчика этикеток Smart Label Developers Kit; принтер T5000 SR, печатающий штрих-коды формата EPC, но модернизируемый для работы с RFID-этикетками, и соответствующий комплект модернизации для него ThermaLine T5000 Smart Ready Upgrade Kit. Благодаря тесному сотрудничеству Printronix с организацией EPCglobal в продуктах линейки достигнута совместимость оборудования EPC и RFID, причем принтер SL5000e MP стал первой платформой, полностью соответствующей требованиям EPC Class 0 и EPC Class 1. Использование SL5000e MP с оборудованием других производителей, поддерживающих протоколы Alien Class 1 или Matrics Class 0, также не вызывает никаких затруднений. Принтеры поддерживают не только стандарты EPC Class 0, 0+ и 1, но и могут печатать популярные в Европе UHF-метки стандарта Philips UCODE EPC 1.19 (подгруппа меток производства Philips семейства ICode с рабочими частотами 862-928 МГц и 2,45 ГГц).

Рис. 4. RFID-этикетка.

IBM также объявила об открытии консалтинговой службы по защите частной информации при применении RFID-технологий, которая помогает компаниям обеспечить доверие своих клиентов, используя при этом RFID-системы с максимальной выгодой для бизнеса. Консультанты службы предоставляют информацию о местных и международных законах об охране частной информации, а также о принципах Организации экономического сотрудничества и развития (ОЭСР), лежащих в основе многих законов об охране частной информации. Консалтинг по вопросам охраны частной информации предусматривает оценку, проектирование и внедрение оптимизированных с точки зрения охраны частной информации RFID-решений, разработку политик, конструктивных подходов и методов обмена информацией, программы обучения и повышения осведомленности сотрудников. Эти услуги позволяют ответственным сотрудникам компаний лучше понять, какие данные собираются, как они будут обрабатываться и кто будет иметь к ним доступ. В ходе специального двухдневного консультационного семинара клиенты получают рекомендации касательно оптимальных методик, а также политик и процедур получения согласия на применение технологии в целях защиты частной информации потребителей, сотрудников и партнеров. Услуги консалтинга по охране частной информации могут быть расширены для более широкомасштабных внедрений.

Кроме того, корпорация IBM дополнила решение IBM RFID Solution for the Consumer Driven Supply Chain стартовыми комплектами, ориентированными на конкретные отрасли. Эти комплекты упрощают производителям и розничным продавцам потребительских товаров сверку заказов, создание отчетов о доставке, а также проверку комплектности грузов и состояния товарных запасов. Все это помогает розничным компаниям и их партнерам-производителям снижать затраты на товарные запасы и логистику, одновременно повышая качество обслуживания и объемы продаж.

Предназначенное для RFID-систем связующее ПО IBM WebSphere RFID построено в сервисно-ориентированной архитектуре, предоставляющей надежную, масштабируемую, основанную на стандартах платформу для развертывания RFID-решений. Предлагаемое IBM сочетание высококлассных услуг, связующего ПО и стартовых комплектов позволяет заказчикам ускорить развертывание RFID-решений.

Альянсы и решения

Еще в прошлом году Royal Philips Electronics и IBM заключили соглашение, в рамках которого планируют вести интенсивные разработки в области систем радиочастотной идентификации и технологий смарт-карт. Согласно заявлению компаний, они планируют уделять особое внимание решениям для таких сфер, как управление цепочками поставок и активами, розничная торговля, транспорт, а также для финансовых и правительственных организаций. Кроме того, по условиям достигнутых договоренностей, IBM Global Services разработает RFID-систему для производственных и дистрибьюторских подразделений Philips Semiconductor на Тайване и в Гонконге.

Нынешней весной корпорации Intel (http://www.intel.com) и SAP (http://www.sap.com) объявили о планах сотрудничества в сфере создания систем управления бизнес-процессами, использующих технологию RFID. Согласно достигнутым договоренностям, Intel предоставляет стандартизованную аппаратную архитектуру, позволяющую интегрировать устройства с поддержкой RFID с программными комплексами от SAP, такими, как система управления цепочками поставок mySAP Supply Chain Management и платформа SAP NetWeaver.

Как известно, SAP довольно успешно помогает своим клиентам внедрять RFID для получения максимальной экономической выгоды от этой быстро развивающейся технологии. SAP встраивает мощную RFID-функциональность в свои решения, входящие в комплекс mySAP Business Suite, и предлагает RFID-пакеты, отвечающие специфическим отраслевым требованиям. Одно из таких приложений, представленное в решении mySAP Product Lifecycle Management (mySAP PLM) и предназначенное для учета основных средств предприятия, обеспечивает компаниям возможность экономически эффективно и надежно функционировать круглосуточно семь дней в неделю. Это приложение эффективно управляет такими важными основными средствами, как машинное оборудование, электростанции и транспортные средства в течение всего их жизненного цикла. Чтобы расширить возможность доступа к данному решению специалистов по сервисному обслуживанию, работающих на объектах клиентов, SAP замыкает цикл бизнес-процессов от объекта клиента до системы back-end с помощью базирующегося на RFID-технологии мобильного решения SAP Mobile Asset Management и инфраструктуры SAP Auto-ID Infrustructure. Такой интегрированный подход помогает изменить методы управления основными средствами - перейти от стратегии реагирования на сбой, "ремонта после поломки", к прогнозирующей и предупредительной стратегии.

Значительное внимание технологии RFID уделяет в этом году корпорация Sun Microsystems (http://www.sun.com). Так, в январе она анонсировала систему идентификации на основе радиометок, предназначенную для использования в розничных торговых сетях и правительственных организациях, - Sun Java System RFID Tag and Ship ISA Solution. Речь идет о законченном решении начального уровня, ориентированном на те компании и учреждения, которые хотят оперативно внедрить у себя RFID-систему для задач идентификации и учета. Оно включает в себя рабочую станцию Sun W2100z с монитором, ПО Sun Java System RFID, принтер Printronix RFID, а также считыватели радиометок и штрих-кодов.

А уже в апреле Sun Microsystems представила новую версию своего ПО для корпоративных RFID-систем - Sun Java System RFID Software 2.0. Согласно заявлению представителей компании, анонсированное ПО отличается повышенной производительностью, улучшенной безопасностью, поддержкой стандартов RFID следующего поколения, а также расширенными возможностями администрирования. В частности, Sun Java System RFID Software 2.0 включает в себя браузерный интерфейс для централизованного мониторинга и управления RFID-устройствами в сети. ПО Sun Java System RFID Software оптимизировано для платформы Solaris (аппаратные архитектуры SPARC и x64, рис. 5), а также доступно для Linux.


Рис. 5. Пример RFID-системы.

Интерес министерства обороны

В этом году компания Symbol Technologies (http://www.symbol.com) заключила пять соглашений на поставку мультипротокольных стационарных считывателей меток RFID для оборонного ведомства США, что позволит этому министерству внедрять и эксплуатировать технологию RFID Symbol на военных предприятиях во всем мире с целью наблюдения за материалами и компонентами по всей цепочке поставок министерства.

Теперь считыватели меток RFID Symbol дадут министерству обороны возможность отслеживать все - от танков до туалетной бумаги - и будут способствовать получению точной информации и ее обработке в режиме реального времени. Контракты заключены со стратегическими партнерами Symbol Technologies: CDO Technologies, Cheval Rouge, RSI ID Technologies, SYS-TEC Corp. и WFI Government Services и связаны с использованием стационарных мультипротокольных считывателей RFID от Symbol.

Мультипротокольный считыватель Symbol Technologies, предназначенный для промышленного использования, обеспечивает развитые средства ввода данных для считывания, записи, обработки и передачи информации от любых EPC-совместимых пассивных меток RFID с целью оперативной, автоматической и точной идентификации любого товара в пределах цепочки поставок. Мультипротокольный считыватель RFID входит в линейку решений корпоративной мобильности Symbol Technologies для ввода, передачи и контроля информации от точки сбора данных до точки принятия решения и обратно, обеспечивая возможность учета и экономию средств.

Стоит отметить, что Symbol Technologies - далеко не новичок на рынке RFID. В этом году она выпустила Symbol XR400 (рис. 6) - считыватель идентификационных радиометок корпоративного класса, способный проводить прикладную обработку данных на месте в режиме реального времени. Это устройство стало первым коммерчески доступным считывателем на платформе Windows CE.

XR400 базируется на апробированной модели RFID Symbol AR400, которая обеспечивает надежное высокопроизводительное считывание данных в RFID-системах корпоративного класса. Устройство поддерживает все метки стандарта Electronic Product Code (EPC) Generation 1 - как класса 0, так и класса 1, - и полностью совместимо с протоколом второго поколения EPC Generation 2 (Gen 2) за счет будущего обновления микропрограммного обеспечения.

Считыватель XR400 содержит порты ввода-вывода общего назначения и хост-интерфейс USB, что позволяет ему управлять самыми разнообразными устройствами - от световых датчиков и сигнализации до Web-камер и дисплеев. С помощью подобных периферийных устройств предприятия могут использовать RFID для активации различных бизнес-процессов, включая динамические сборочные линии, которые реконфигурируются в зависимости от поступающей на конвейер продукции; сигнализацию реального времени, которая не дает водителям автокаров ошибаться при перемещении грузов; и системы, наблюдающие за соблюдением правил "аккуратного обращения", которые сигнализируют о прохождении мимо датчика хрупких изделий.

Уже к лету Symbol Technologies представила систему RFID EPC Generation 2 и продемонстрировала взаимодействие меток EPC Gen 2 и Gen 1 класса 0 и класса 1. Gen 2 представляет собой упрощенное и расширенное решение существующего стандарта EPC Generation 1, которое должно способствовать росту рынка RFID, предлагая единый мировой стандарт. Важное преимущество нового стандарта состоит в том, что он поддерживает режим плотной установки считывающих модулей. Раньше, если несколько модулей чтения, установленных близко друг к другу, одновременно передавали меткам сигнал, то они создавали взаимные помехи. Стандарт режима плотной установки считывающих модулей позволит размещать в одном месте 20 модулей и больше, причем они не будут мешать друг другу при работе. Кроме того, в тегах Gen 2 будет аппаратно реализовано шифрование, благодаря чему узнать содержимое тегов смогут только пользователи с соответствующими полномочиями.

Демонстрационная система Gen 2, включающая новый считыватель Symbol XR400 и программную платформу IBM WebSphere RFID, - новый этап в сотрудничестве Symbol и IBM в области разработки комплексных мобильных бизнес-решений и приложений для заказчиков. Philips же выступает партнером по технологии Electronic Product Code (EPC) Gen 2.

Заключение

Средства радиочастотной идентификации значительно дороже штрих-кодирования или магнитных меток, но их преимущества в том, что они позволяют пополнять данные идентификационной метки, записывать достаточно большой объем данных, обеспечивать информационную защиту; резко снижают затраты на сбор и обработку данных, исключают ошибки, неизбежно возникающие при ручном вводе информации; повышают оперативность работы с регистрационной информацией, сокращают учетный документооборот; устойчивы к длительным агрессивным состояниям окружающей среды и внешнему воздействию. RFID-технология позволяет разместить метку внутри объекта идентификации, считывать и заносить информацию в идентификатор в момент прохождения объекта идентификации через контрольные точки, обеспечивает работу считывателя с десятками, а то и сотнями меток одновременно.

Компаниям следует подумать о внедрении RFID-технологии в том случае, если им требуется:

  • резкое сокращение затрат на ввод данных и исключение ошибок, связанных с ручным вводом информации;
  • высокая оперативность регистрационной информации для менеджеров или клиентов компании;
  • высокая степень автоматизации управления имуществом, складами, транспортом, доступом людей в помещения;
  • полностью автоматическая регистрация с последующей компьютерной обработкой результатов (например, система регистрации пассажиров маршрутного такси или автобуса с автоматическим взиманием платы за проезд);
  • улучшение контроля качества в производственных, складских и транспортных операциях;
  • сокращение учетного документооборота и трудозатрат.

Как уже отмечалось, RFID-технологии применимы для решения широкого спектра задач, однако с точки зрения ИТ сегодня они наиболее перспективны в сфере управления поставками. RFID окажет существенное влияние на все аспекты управления цепочками поставок - от элементарных операций (например, перемещения товаров через погрузочно-разгрузочные терминалы) до таких сложных задач, как управление терабайтами собранной в реальном времени информации обо всех имеющихся запасах.



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме